October 18, 2017
Joshua Pollack
The following is an excerpt from Defense One.
How good is America’s homeland ballistic-missile defense? If a war broke out tomorrow, could it stop an attack from North Korea?
The short answer, despite many assurances from Defense Department officials, is that no one knows. Ballistic-missile defense, or BMD, is a stunningly ambitious and complex undertaking, unforgiving of the smallest problems. An attacker has many built-in advantages, and it is only because of North Korea’s supposed technological backwardness—a doubtful, increasingly out-of-date notion—that the existing defensive system has enjoyed any credence at all.
Still, North Korea’s force of Hwasong-14 intercontinental ballistic missiles, or ICBMs, is a work in progress. In American terminology, it appears to be at a stage called “initial operational capability”—short of full-scale readiness, but available to some extent on an emergency basis.
Trying to anticipate how an exchange would play out feels like writing a script for a new remake of Mothra vs. Godzilla. But let’s give it a whirl.
First, what does the American system look like today? It’s composed of a network of radars, space-based sensors, battle-management systems, and “hit-to-kill” interceptor missiles designed to smash an attacking warhead through the sheer force of the collision. A total of 36 interceptors are currently deployed—four at Vandenberg Air Force Base in California, and 32 at Fort Greely in Alaska. Another eight are to be installed by the end of the year in silos at Fort Greely. Called the Ground-based Midcourse Defense, or GMD, the system is operated by U.S. Northern Command, which is charged with the defense of American homeland.
The Pentagon’s authority for testing and evaluation rates the system as having “limited capability to defend the U.S. Homeland from small numbers of simple intermediate-range or intercontinental ballistic missile threats launched from North Korea or Iran.” But the evaluators decline to provide “quantitative” assessments of its performance, citing a lack of ground testing of key subsystems with “accredited” models and simulations.
Read the full article at Defense One.