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Advanced Multi-Material Eulerian Algorithms

on Generalized Meshes
by Mike McGlaun
Computational Physics Research and Development
Division 1431
Sandia National Laboratories
Albuquerque, New Mexico

Eulerian algorithms for modeling the motion of compressible media have advanced
tremendously in the last few years. High-order accurate schemes for modeling con-
tinuous and discontinuous flow are on 2 much firmer mathematical foundation.
Unfortunately the algorithms are routinely developed for the motion of a single
fluid on uniform, rectangular mesh. Many important problems involve multiple,
immiscible solids and it is often advantageous to use more general meshes.

This talk describes our work to c¢xtend the Eulerian algorithms to model the motion
of multiple, immiscible solids on arbitrary-connectivity meshes. The arbitrary-con-
nectivity mesh is constructed from hexahedra. An arbitrary number of hexahedra
can share a common vertex.

Extending the algorithms to mutltiple, solid materials introduces several complica-
tions. Some of the algonthms easily extend while others do not. Some new algo-
rithins must be developed, e.g. algonithms to model the interfaces between the
immiscible fluids. "

The arbitrary connectivity mesh complicates extending the algorithms and develop-
ing software to implement the algorithms. Most algorithms must be generalized to
accommodate an arbitrary number of neighbor cells. The data structures are much
more complex, so concepts such as left-side and right-side neighbors loose their
meaning.

This werk perfommed at Sandia Netional Laborswnes supparted by the U8, DOE under contracy 8DE-ACO4-76DPO0TRY.
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David Womblae and Brucs Hendricksaon
Sandia National Laroratorias
Albuquergue, New Mexico

Abstract: Dense linear gystems of equations are quite common in
science and engineering, arising in boundary element mathods, least
sguares prcblems and other settings., Massively parallel computers
will ba necessary to sclve the large systems required by scientists
and engineers, and scalable parallel algorithns for the linear algebra
applications must be davised for these machines. A critical step in
these algorithmes i3 the mapping of matrix elements to processors., In
this paper, We study the usa of tha relativaly new, torus--wrap
mapping in general dense matrix algerithma, freom both theoretical and
practical viewpoints. We prove that, under reascnabla assumptions,
this assignment scheme leads to dense matrix algorithms that achieve
(to within a constant factor) the lower bound en interprocesscr =
conpunicaticn. We alse show that the torus--wrap napping also allows
algorithms to exhibit less idle time, better lcad balancing and less
menory ovarhead than thae more common row and cclumn mappings.

Finally, we discuss practical implementaticn issues, such as
cempatibility with BLAS levels 1, 2, and 3, and present the results of
inplementations of sevearal dense matrix algorithms. These theorstical
and expermental rasults ars ceomparsd with those cbtained from more
traditicnal mappings.
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Numerical Modeling of Two-Dimensional Magnetogasdynamics Flow in
Fulerian-Lagrangian Variables

V.E, Neuvazhaev, V.D. Frolov, A.D. Zubov
(VNIITF, Chelyabinsk-70)

Annotation

This report introduces a procedure for numenically calculating two-dimensional
flows of thermally conducted gas in complex systems. The procedure is generalized in the
case of gravitational magnetic gas dynamics. It is based on the Eulerian-Lagrangian
description of motion with a specially-located reaction-rate vector in mobile coordinates. In
order to implement the implicit, finite-difference technique, a method of splitting along the
lines of physical processes and directions is used.

Presented are several resuits from the calculations of a number of applied problems
that were solved using the TIGR software package. This includes problems on the
evolution of axially symmetric periurbattons in the A.l. Pavlovsky cascade magneto
cumulative generator, as well as problems on the gravitational compression of a

homogeneous gas cloud.



Numerical Modeling of Two-Dimensionali Magnretogasdynamics Flow in
Eulerian-Lagrangian Variables
V.E. Neuvazhaev, V.D, Frolov, A.D, Zubov
(VNUTF, Chelyabinsk-70)

The TIGR technique is a generalization /1/ of the arbitrary Euler family of
coordinate technique that was described earlier in /2/. Based on /1/ an analogous technique
of /3/ was developed at the VNIHTF,

The complete system of equations for magnetogasdynamics taking into account
radiant heat conduction, and solved by the TI(GR technique look like /4/:

dp s+ p-divu-o: {1)
dt

du+l.gradP= - 1 .[H.rotH]; (2)
dt p 4mp

dH —rot [u - H] - rot { - rotH); (3)
dt

divH =0 (4)
dE v 1. givu= I div {& - gradT) + X_(th)2 (3)
dt p p P

where the equation of state of a substance and the ldnetic coefficients are determined by the
relationship: P = P(p,T), E=E(p,T), 2 = & (p.T), 6 = 0 (p.T), x =c2/ 4no, pis the
density of a substance, E is the specific internal energy, P is pressure, u is reaction ratg, &
1s the coefficient of radiant thermal conduction, ¢ is the coefficient of electrical
conductivity, H is the stress level of the magnetic field, and T is temperature.

The TIGR technique employs a mixed Eulerian- Lagrangian method of describing
the motion of gas. One family of coordinate lines, coinciding with the separation
boundanes, is Lagrangian, while the other is Eulerian. This method makes it possible to
monitor the separation boundaries and simply calculate the overflow of the substance in
fayers. Thus, the curvilinear coordinate system is linked with the movement of boundaries
over time and is mobile.

The Eulerian system of coordinate lines represents a set of straight lines (rays) that
do not intersect the regions of the solution.
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Motion equations of a continuous medium are recorded in these mobile curvilinear
coordinates and take into account the fact that along the boundaries that coincide with the
I agrangian family of coordinate lines, the corresponding contra variant component vector
of reaction rate is preserved continuously. Such expansion makes it possible to not have to
isolate the separation boundary during computation.

Equations of continuity {1}, motion (2), magnetic field {3} and energy (5) are
solved according to a splitting-by-vector method: "angular” (Eulerian) and radial
{Lagrangian). The resulting implicit algebraic equaton, after the linearization of nonlinear
terms, is solved by a trial run.

In an overwhelming number of applications the configurations of the magnetic field
can be {imited to two frequent occurrences:

-- two components of velocity {reaction rate} and two components of the magnetic
field, lying in the same plane as the vector of velocity;

-- two (or three) components of velocity and one component of the vector of
magnetic strength, perpendicular to the vector of velocity.

The following are examples relating to both the first and second: Z and §-pinch,
expansion of the plasma in the extemnal field, a gravitational collapse of the magnetoactive
interstellar cloud, magnetic cumulation, various thermonuclear devices and the like.

[n the case of a "poloidal” magnetic field it is advantageous (o use a representation
of the field through the vector potential, since, in this case, 10 determine the field it is
sufficient to solve the equation for the only null component of the vector potential.

The bibliography describes methods of magnetogasdynamics (MGD) calculations
that use Lagrangian and Eulerian difference meshes and explicit diagrams of the first and
second order of precision. However, it already appears to be illogical to use implicit
diagrams in one-dimensional problems. The presence of additional {to sound) Alfven
velocity dictated by the magnetic pressure ieads to a situation in which the condition for
Courant stability typical in explicit diagrams turns out to be a one time increment more
rigid. Therefore, it makes more sense, when solving magnetogasdynamics probiems, to
employ implicit methods. If one takes into account the fact, that coefficients of migration
(thermal conduction and electric conduction) can also alter in a problem of several different
orders of magnitude, then the diffused parts of the equation, which are non-linear in the
case of vanable coefficients of migration, should be approximated by implicit expressions.
However, the difference diagram, even for systems equations describing one-dimensional
gas dynamics flows with thermal conduction, cannot generally be reduced to three point
equatons. In the case of multidimensionat flows, either iteration methods or fractional
increment methods are used /5/.



The stability condition of a separate trial run method for a number of practical and
interesting problems is too rigid; however, it can be avoided in the so called method of
combined runs (6), in which dynamics, kinetics and electrodynamics equations are solved
concomitantly by Newton iterations at the first stage, while at the second stage energy
equations are solved, and a record is made of the dissipative processes.

The isothermic process relates to the first group of equations traditional for the
TIGR technique for algorithms of separate (sequential) runs. It can be demonstrated that
the use of 1sothermic process for calculating MGD flows restricts the range of
unconditional stability. Therefore the TIGR software stipulates envisages a transfer to an
algorithm of combined runs /6/. This made it possible to increase the implicitness of the
most difference diagram and thus avoid lmitations on its stability.

[n the TEGR technique the thermal conduction equation is solved by the diagram of
fission by direction. The difference equation is written down on a nine-point template,
The equations for the vector potentials in the case of the "longitudinal™ {potoidal for
particular symmetry) magnetic field and equations for the strength field in the case of the
"transverse” (azimuthal) magnetic field have two types of two-dimensional diffusion
equations. Therefore the notonious methods of solving difference equations can be taken
advantage of,

In the case of axisymmetry the gas dynamics flow 1s invariant relative to the
Galilean type transformation of migration along the axis of symmetry. A difference
solution can have this property. Theoretic analysis allowed us to to change the difference
approximation of the TIGR diagram such that the numerical solution also satisfied the
condition of invanability relative to the Galilean transformation. The significance of this
question increases as the perturbations of the magnetic and gravitational fields are recorded.

In order to venfy the workability of the MGD TIGR technique along with
theoretical research on approximations and stability of the difference diagrams used, a
number of control calculations of flows with magnetic fields were conducted. Severat of
the test calculations dealt with cne-dimensional flows, such as the motion of MGD shock
waves, a fall in the arbitrary MGD jump and Joule's energy release. Also conducted were
calculations of two-dimensional problems from a rather general class of motion with a
uniform deformation characterized by the linear relationship of the coordinate 1o the
velocity. Such precise solutions to MGD systems equations are very useful in theoretical
analyses of multi~dimensional motions. Moreover, they represent a rather non-trivial class
of solutions used for testing programs of numerical moedeling of multti-dimensional
continuous medium flows. In-depth research on this class of MGD flows was conducted
in papers /7/ and /8/ by V.A. Simonenko and one of the authors of this report.
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When the indicated relationship of the field of reaction rates to the coordinates, and
specific conditions for the flow parameters exist, the system of MGD equations is reduced
10 an autonomous system of typical difference quadratic equations, after the solution of
which, the flow parameters appear according to explicit formulae. In particular, 1t is
possible to derive a model of a MGD-type flow with a umform deformation, in which there
would be an arbitrary number of shells in the shape of coaxial elliptic cylinders, whose
semiaxis would change over time by law, as the solution to the above mentioned dynamic
system determines. The magnetic field is axial.

Records can be made within the framework of the condition of a uniform
deformation and other physical effects, such as diffusion of the magnetic fieid, thermal
conduction, the state of having multi components, auto-gravitation and the bke. The value
of such solutions lies in that there exist motions with cumulative characteristics that
conform to the adiabatic compression of the substances finite masses. This demonstrates,
in particular, that the multi-dimensional fiow in and of itself does not exclude the possibility
of achieving singular states. Here it would be appropriate to recall the issue ratsed by E.L.
Zababkin regarding the dissymmetry of initial data which might distort the focusing, but
does not eliminate fact of unlimited curmulation /9/. It turas out that motions with a uniform
deformation can lead to a collapse which for the most part were exact solutions of three-
dimensional eguations of continuous medium mechanics. This suggests that deviations in
the second harmonic from one-dimensionat symmetry does not exclude achieving optimal
states /7/.

Analyses of the asymptotic behavior of the class of flows of near singularities being
studied corroborate and generalize the earlier obtained asymptotics as a multi-dimensional
case for self-similar motions (see /10/). For example, the gas spheroid (an eclipsoid with
two identical semiaxes can have three different extreme modes of compression: 1) focusing
on a segment of the axis, 2) focusing on the disk and 3) focusing on a point (generally
asymmetrical). Given this, the limit flow corresponds to the focusing on the axis with
cylindrical symmetry, while it corresponds to the focusing on the disk with oblate
symmetry. In the third instance where the focusing is on the center, there is generally
asymmetry.

Such solutions have an independent value for understanding a range of physical
phenomena, e.g. the compression of various systems, several astrophysical processes, and
others. They can also be used for testing and calibrating algorithms, and for programs for
the mathematical modeling of gas dynamics phenomena

Also interesting is a subclass of mult-dimensional finite motions with a uniform
deformation. Pulsation in the vicinity of a balanced state could, under certain conditions,
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acquire a stochastic property, which, in principle, enables one to regard such flow as
turbulent tlow.

Currently it is fairly well understood that the onset mechanism of turbulent motion
from the laminar flow is not related only to the dissipative quality of the system. Examples
of flows described in /7/ and /8/ show that complex and complicated, i.e. essentially
turbulent, motion can arise in "ideal” Hamiltonian systems as well. Several types are
known that make a transition from regularity to chaos. These are the so called "turbulence
scenarios” that are based on the doubling frequencies phenomena, the **TN bifurcation,
intermittence and the like. However, all of these have only a highly specialized behavior
and use considerably dissipating properties of the selected flow model. The primary cause
for the appearance of turbulence is, in our opinion, not necessarily related to dissipating
factors, and this is substantiated by the flow examples given in this paper.

It is important to stress that unlike the popular system at Lawrence, which is only
an approximate convection model, motions with a uniform deformation represent precise
solutions to the equations in quotient derivatives of continuous medium mechanics.

The calculation of the development of two-dimensional axially assymmetric
perturbations in explosive magneto cumulative (MC) generators serves as an exampie for
how the TIGR technique is applied.

One of the most successful constructions of explosive MC-generators that produce
magnetic fields with an order of 1017 **TN is the cascade MC-generator, developed by A.L.
Palovsky et al. /11/-/13/. A multi-entry, muitistratal spool solenoid made of insulated
copper wire serves as the cylindrical liner. After the shock waves have passed from the
external charge, the explostve solenoid becomes a conducting shell that compresses the
magentic field. Several internal coaxially arranged cascades work analogously to this shell,
and at time zero represent a composite cylinder made of densely packed insulated copper
wires, laid lengthwise in an axial direction and coated with an epoxy compound.

In addition to the function of protecting the nappe which is occupied by the
magnetic field and a detector against the breakdown of substances in streams, the cascades
effectively suppress the instability which is developing during the compression process.

Studies have shown the optimal number of cascades to be used in experimental
systems work to be three. Also important is the selection of the location for the cascades.
This is so that the perturbations in the shape of the previous cascade do not manage to
progress to such an extent that they will affect succeeding cascades.

TN Name illegible in original Russian text
TN Abbreviation illegible in original Russian text

6



Considering the complexity and high cost of the experimental projects, it is
becoming increasingly important to create a physical, mathematical model for perturbation
development that would enable one to adequately describe the phenomenon. For this
purpose, the TIGR technique includes a sufficiently complete description of the necessary
thermodynamic and electromagnetic properties of the pertinent substances in all the states
that are manitested in the processes.

The TIGR program was used to conduct comparative calculations of Kidder's
maodel problems (see /11/) on the compression of the magnetic flow using the copper
cylindrical liner in a one-dimensional formulation, while calculating various physical
processes (the compressionability of the liner and the diffusion of the magnetic field) and
various approximations (equations of state and forms of conduction functions).

Moreover, comparative calculations on the development of **TN .Taylor instability
were conducted in an analogous liner system studied both theoretically and numerically by
Somon /15/.

A two-dimensional calculation of the first cascade MK-generator was conducted
/11/-/13/ using the TIGR program. V.A. Simonenko, V.F, Kuropatenko and research
fellows A.A. Karpikov and V.I. Mamyshev at the VNIIEF participated in the formulation
of the calculation and discussion of the results.

The calculations showed that in the process of magnetocumulative motion changes
take place in the curvature (even twice) at points along the intemmal boundaries of the shell:
concavity becomes convexity and vice versa. This "flipping” effect 1s supported by
experimental data. Moreover, the temporal scales of the change in the surface phase,
obtained in the calculation, are in keeping with the expeniment.

With the aid of numerical calculations using the TIGR technique a contemporary
theoretical astrophysics problem, i.e. the gravitational compression of a rotating gas cloud
was studied /16/,

For numerical calculations on gravitating continuous medium dynamics, a method
for solving law of small numbers equations on a curvilinear TIGR mesh has been devised.
It is based both on the method and diagram of determining the correction being stabilized.
A conservative difference approximation was used to solve the impulse equation which
preserved the local (in each Lagrangian layer) point of motion quantity.

Numerical modeling of a homogeneous axisymmetric collapse performed by a
various authors (note Larson's /17/ and Charnuter's /18/ pioneer work) with the help of the

TN Name illegible in original Russian text



most varied gas dynamics techniques, is today still leading to alternative solutions to this
occurrence during the process of calculating either disk or ring structures.

Numerical calculations of the gravitational compression of a rotating gas cloud
using the TIGR Eurlerian-Lagrangian technique corroborate the focusing in the disk at a
time intcrval being determined by a precise solution with a uniform deformation.

Motions with a uniform deformation /7/-/8/ do not only provide an adequate test for
the problem, but also are adequate for determining natural conditions, to wit: null initial
velocity; boundary conditions matched with a precise solution; solid-state rotation; a cloud
spheroid given a constant initial density and temperature. These motions represent a
precise solution, within which the initial spheroid (in particular, a sphere) collapses on the
infinitely thin disk in the equatorial plane.

Within the framework of the accepted physical and mathematical model an
occurrence of a ring structure was observed in the caiculation done on the TIGR Eulerian
mesh {along every time increment the difference mesh in the Lagrangian radial direction
was revived). This is explained by the diffusion of the mass and the angular sequence
through the boundaries of the Eagrangian mesh. (The diffusion has a difference origin, see
Norman, et al.)

In the calculations, even without the readjustment in the mesh, the mass and the
angular sequence inside each Lagrangian layer is exactly preserved. The collapse is
accompanied by a cyclical sequencing reflected off the equatonial surface of the shock
waves in ever decreasing temporal and spatial scales. An earlier description of this mode of
cumulation in a model with other parameters was published by Norman et al. /18/.

Among other supplements to the TIGR software package we note the following:

-- numerical research on the effects of radiant dissymmetry and thickness non-
uniformity in the shell on the degree of compression and the form of the target in the
relationship between the amplitude and the length of the perturbation wave when the shell
target 1s compressed by laser radiation 20/,

-- numerical research on the development of **TN -Taylor unstable separation
boundaries of liquefiable mediums in similar energy release problems /21/.

In addition to the current inclusion into the TIGR program of the possibility of
recording the spread of energy in a tri-temperature approximation, the TIGR is part of a
greater computer software program call TIGR-OMEGA, in which it is possible to record a
mulfitude of other physical processes.

TN Name illegible in original Russian text



Currently, the possibiiities for using the TIGR code program created in our institute
are expanding. The program describes magnetogasdynamics and plasma processes and is
used for modeling new classes of phenomena. This pertains specifically to the physical and
mathematical modelling of processes taking place during the mteraction of the plasma with
the wall and the diverter plates in the ITER Tokamak /22/ and during "explosions™ of the
piasma against the wall (the so called "instability explosion”).

There are several different theoretical studies this topic (for theoretical analyses
done, see, for example, f23/) and several experiments 1mitating explosions have been

conducted.
BIBLIOGRAPHY

1. Bisyarin, A. Yu., Gribov, V.M., Zubov, A.D, et al. "TIGR Program for Calculating
Two-Dimensional Problems of Computational Physics.”" VANT, seriyva Metody i
programmy chislitel'nogo resheniya zadach maremarichekoi fiziki., vypusk 3/17, 1984,
p. 34.

2. Yanenko, N.N., Frolov, V.D. and Neuvazhaev, V_E. "On the Application of Fission in
Numerical Computations of the Metions of Thermal Conduction Gas in Curvilinear
Coordinates.” Izvestiya SO AS SSSR 1967, No. B, pp. 74-82.

3. Voronin, B.L., Isaev, V.N. "On the Question of Formulating Equations of the Motion
of Thermal Conduction Gas in Eulerian-Lagrangian Coordinates,” from the collection
"Chislitel'nye metody mekhaniki spolshnoi sredy”, 1981, vol. 12, No. 6, pp. 8-14.

4. Samarsky, A.A., Popov, P. "Difference Methods of Solving Problems on Gas
Dynamics™. Moscow: Nauka, 1980.

5. Yanenko, N.N. "Method of Fractional Increments in Solving Multi-Dimensional
Problems of Mathematical Physics.” Novosibirsk: Nauka, siberskoye otdeleniye,
1967.

6. Gasilov, V.A., Karpov, V.Ya., Krukovsky, A.."On Algorithms of Numerical Sotutions
to One-Dimensional Non-Stationary Problems of Magnetic Hydrodynamics." Preprins
of IPM AS SSSR, No.54, 1984, p. 256.



7. Zubov, A.D., Simonenko, V.A. "Motions with a Uniform Deformation in Magnetic Gas

Dynamics.” VANT, seriva Teoreticheskaya i prikiadnaya fizika, 1986, 1ssue 1, p. 3.

8. Zubov, A.D., Simonenko, V.A.."On Stochastic Motions with a Uniform Deformation.”

VANT, seriva Teoreticheskaya i prikladnaya fizika, 1987, issue 2, pp. 45-56.

9. Zababakhin, E.I."Phenomenon of Unlimited Cumulation."Mekhanika v SSSR za 50 ler,

10.

11

13.

14.

i5.

16.

17.

Vol. 2. Moscow: Nauka, 1970, p. 313.

Zababakhin, LE., Simonenko, V.A."Spherical Aligned Compression Wave."
Prilladnava matematika § mekhanika. 1978, vol. 42, No.3, p. 573.

Pavlovsky, A.l, Lyudayev, R.Z."Magnetic Cumulation.” Voprosy sovremennoj
eksperimental’noi i teoreticheskoi fiziki (for the 80th birthday of Academician B,
Khariton). Leningrad: Mir, 1984, pp.206-270.

. Pavlovska, A.L., Kolokolchikov, N.P. and Tatsenko, O.M. et al."Reproducible

Generation of Multimegagauss Magnetic Fields.” Megagauss Physics and Technigues,
Ed.by P. Turchi. New York: Plenum Press, 1980, pp. 627-635.

Pavlovskn, AL, Kolokolchikov, N_P., Dolotenko, M.L., et al."Cascade
Magnitocumulative Generator of Superstrong Magnetic Fields.” Sverkhsil'nye
magnitnye polya : Edited by Titov, V.M., Shvetsov, G.A.. Moscow: Nauka, 1984,
pp. 19-22,

Knopfel', G. "Superstrong Impulse Magnetic Fields." Moscow: Mir, 1972, p. 391.

Somon, J.P. "The Dynamical Instabilities of Cylindrical Shells." Journal of Fluid
Mechanics, 1969, v. 38, part 4, pp. 769-791.

Bisyarin, A. Yu., Zubov, A.P. "Numerical Modeling of the Gravitational Compression
of a Rotating Gas Sphere.” from the collection "Chislennye metody dinamiki vyazkoi
chidkosti. Novosibirsk, 1983, pp. 56-61.

Larson, R.B. “The Collapse of a Rotating Cloud.” Mon. Not. R. Astron. Astrophys.,
1975, v. 39, pp. 207-212.

10



18, Tscharnuter, W. "On the Collapse of Rotating Protostars." Astron. Astrophys., 1975,
v. 39, pp. 207-212,

19. Norman, M.L., Wilson, J.R. and Barton, R.T. "A New Calculating on Rotating
Protostar Collapse.” Astrophysics Journai, 1980, v. 239, No. 3, part 1, pp. 968-981.

20. Bokov, N.N., Bunatyan, A.A_, Lykov, V.A_ et al. "The Development of
Perturbations While Compressing a Shell Target with Laser Radiation.” Pis'rma v
ZRETF, v. 26, issue 9, pp. 630-634,

21. Bokov, N.N., Kuzmin, A.Yu., Neuvazhaev, V.E,, Frolov, V.D, "Numerical Studies
on the Development of Perturbations on the Boundary of Two Compressed
Environments in a Self-Similar Energy Release Problem.” Marematicheskoye
modelirovanie, 1989, v. 1, No.9, pp. 1-8.

22. ITER conceptual design: Interim Report. Intemnational Atomic Energy Agency. Vienna
1990,

23. Martynenko, Yu. V., Moskovkin, P.G. "On the Erosion of the Walls of a Tokamak

During Plasma Explosion.” VANT, seriva "Termovaderny sintez”, 1991, issue, 1, pp.
17-21.

11



SESSION B

Algorithm Development I1

Discrete Models for Mathematical Modeling of Kinetic Processes Concomitantly with Continuous
Medium Dynamics - Ahmed Gadzhiev (Chelyabinsk)



Discrete Models for the Mathematical Modeling of Kinetic Processes
Concomitantly with Continuous Medium Dynamics

Gadzhiev, A.D.

All-Russian Scientific Research Instiute of Technical Physics (VNIITF)

Introducton
1, One-dimensional method and the KIT program
2. Two-dimensional method and the TIGR-OMEGA program
3. Two-dimensional methods and the FENIKS program

Bibliography

ot



Introduction

This report presents an overview of the methods and programs developed in the
Department of Numerical Methods and Kinetic Processes of the VNLUTF. Discussed are:
the one-dimensional KIT method and the two dimensional TIGR-OMEGA and FENIKS
methods.

The report 1s presented on behalf of the group of individuals who developed the
herein examined methods.

The authors of the KIT method are: L.F. Varganova, A.D. Gadzhiev, V.M.
Gribov, B.E. Neuvazhaev, O.8. Shirokovskaya and V.G. Yakovlev,

The authors of the TIGR-OMEGA method are: N.N. Bokov, A.D. Gadzhiev,
V.M. Gribov, A.D. Zubov, K.A. Mustafin, V.E. Neuvazhaev, V. N. Pisarev, S.B. Serov,
V.D. Florov, O.S. Shirokovskaya.

The authors of the FENIKS method are: A.D. Gadzhiev, V.V. Gadzhieva, S.N.
I ebedev, V. N. Pisarev, A_A. Shestakov.

It should be noted that in the USSR the first methods and software packages for the
mathematical modeling of kinetic processes concomitantly with continuous medium
dynamics in a one-dimensional formulation were developed at the M.V. Kel'dysh IPM AS
USSR under the guidance of A.N. Tikhonov and A A. Samarsky. This knowledge base
was employed in developing the new methods.



I. The one-dimensional method and the software package KIT

Processes modeled:
-- gas dynamic motions taking into account turbulent agitation (TP). Model TPis of a
diffused type;
-- radiant thermal conduction;
-- break-off temperature (T £ T # Ty)
-- production, multiplication, absorption and transfer of neutrons in a multiple group
approximation taking into account the amisotropy of diffusion;
--the kinetics of nuclel m neutrons and thermonucelar reactions, and in energy releasc;
-- production and transfer of y- quanta in a multiple-group approximation taking Compton
scattering anisotropy into account;
-- the transfer of radiation in a multiple group approximation, kinetic and diffusion models;
-- the transfer of energy and impulse of high-speed charged particles in a multiple group
approximation taking anisotropy diffusion into account.

Problem solving methods:

An implicit method with a separate run [1] is used to solve gas dynamics equations,
while an impticit diagram with a scalar run is used to solve thermal conduction equations.

An implicit diagram in conjunction with a matrix run method 1s employed to solvea
systemn of energy equations 1n a three-dimensional approximation. Diagrams based on Sp
and DSy methods are used to solve kinetic equations. In order to ensure a positive solution
and an acceptable monotony, the combination of diagrams of the first and second order of
precision are used.

A DS based method 1s also used 1o calculate the transfer of charged particles.
Given that 1n this instance the matrix of the system of difference equations is not trigonal, it
is suggested that a splitting method be used in conjunction with iterattons along the
cotlision integral [2].

Thermal physical properties of particles and neutron constants:

For solving equations of state I'=I" (p,T), €= (p, T), as well as equilibrium path
lengths of radiation 1=1 (p,T) the software package uses a special library of data that
works both with an analytical form and with matrices of equations of state and transit.

Neutron constants are calcutated in the foliowing manner: first, the neutron flow
ranges are calculated by using the Monte Carlo method with the spectral constants NAS

3



I131. Then, either the 1sotropic or anisotropic group constants are calculated while adhering
to the averaging spectra of the system ranges.

2. Two-dimensional method and the software package TIGR-OMEGA

Processed modeled:
-- gas dynamic motion taking into account turbulent agitation;
- radiant thermal conduction;
-- break-off temperature (T, f Te f To)
-- production, mulaplication, absorption and transter of neutrons in a multiple group
approximation taking into account diffusion anisotropy;
-- kinetics of nuclear reactions, energy release;
-- transfer of y- quanta and a-particles in a one-group kinetic approximaton.

Problem solving methods:

The technique applies the Eulerian-Lagrangian description of motion. The
calculated geometry is described by either a quasispherical or quasicylindrical system of
coordinates, or by a combination thereof.

(as dynamics and conductiveness is calculated by an implicit difference diagram
and applies the method of splitting along physical processes and spatial variables [4].

Both the two-dimensional equation and the system of gas dynamics equations are
recorded in mixed Eulerian-Lagrangian curvilinear coordinates. A local system of
coordinates with the spherical coordinates O, & (polar and azimuthal angles) are
introduced in the set {Q} of the flight directions of the particles.

O =e@y + 0w+ p,

where £ =TI-p2 cosd. n =JI-p2 sind, p=cos 6.

If we orient the polar axis W3 along the radius-vectorT, then we will obtain a record
of the kinetic equation during which a two-dimensional equation transforms into a one-
dimensional spherical symmetrical equation in the spherical symmetry hypothesis. This
approach is used in the T method.

In the second approach, we orient the polar axis @3 axis of symmetry Z. @1 lies on
the plane R, Z. In these coordinates the ttansfer equation look like this:

A RR: Npy+AR.R2.(¥+ ). Ng] +A(R . E-Rqy-Ngj -

At vg Az Vg Ax



A-(Ry-n-Ng) + RRx - agNg - R-Rz - (Sg + 1)

Ad
It can be seen that there is no maximum transition to the spherical symmetry, The DS,
method is used to solve this equation [5,6].

In the T method the unknown function N(r, z, u, ¢, t) taking into account its
precision along ¢, is represented in the form of an infinite row according to the
rigonometrical system of the function {T; = cos ¢}, a difference diagram of the DS
method type is constructed along the remaining variables [7].

The mesh in the set {Q} is constructed by dividing the surface of the unit sphere
into equal areas and by using quadrants that ensure a diffuston limit, thus creating a
"tortoise” mesh.

The kinetics equation is solved by runs along channels in the Z direction.

As an example of numerical calculations using TIGR-OMEGA, we will give
calculations of a thermonuclear detonation in dense plasma taken from the study [8]

3. The two-dimensional method and the software package FENIKS

The package 1s designed to provide mathematical modeling of continuous medium
dynamics and kinefic processes in two-dimensional axisymmetrical systems with complex
geometry and large deformations.

Processes modeled:

- gas dynamic motion;

-- computation of elastoplastic and durable properties of materials (discrete and kinetic
models of mechanical fatlure);

- radiant thermal conduction;

— break-off temperature (T # Te?é Te)

-- production, multiplication, absorption and migration of neutrons in multiple group
isotropic and anisolropic approximations;

-- kinetics of nuclear reactions, energy release;

— migration of energy and impulse of a—particles and y—quania in a singie group
approximation;

-- migration of thermal radiation in a Py approximation.

Several principles that form the basis of the FENIKS technique:
)



a) Calculation by region.

The entire system is broken into grid-like regions within each of which a regular
mesh is constructed out of quadrangles. This approach makes it possible to describe
physical systerns that are complex both 1n terms of their geometry and their composition.

In both the gas dynamics and thermal coaductivity programs, the calcuiations are
done by mesh regions with an interchange of boundary conditions along the internal
boundaries. In gas dynamics the heavy regions take on pressure as a boundary condition,
and the lighter regions normal composite velocity. In thermal conduction the interchange
takes places either in the temperature and the heat flow, or in a sort of linear combination
depending upon the properties of the [numerical] solution.

The neutron migration equation is solved in the entire system by using a transparent
sequencing of all the cells of the mesh regions [9].

Kinetic equations are solved by region.

b} Using an arbitrary Lagrangian-Eulenan description of the motion of the
environment by applying 2 quadrangle mesh. Re-adjustable meshes are used to allow for
soluttons with large deformations to be found.

If the mesh undergoes major deformations during the solution process, then the
calculation of that step consists of two stages: the Lagrangian stage and the stage of
reconstnucting the mesh with a recalculation of the mesh values. The software has two
means of recalculating values. The first is a method which takes into account the
convective flows through the boundaries of the cells during the movement of the mesh to
its new position {10]. The second approach is the method of fractional engineering [11].

When large deformations are present, it is not always possible to describe the
boundaries dividing the medium with Lagrangian lines. Therefore, in FENIKS all the

substances are described by mass concentrations

mj

ci= ____,where m;is the mass of substance i and m is the mass of the entire cell.
m

The presence of three different substances are allowed within one calculated cell that
are characterized by their thermodynamic properties and neutrino-nuclear constants. The
concentrations allow one to make a rough description of the behavior of the contact
boundaries over time. There is a mechanism embedded in the algorithms for calculating
values that prevents excess diffusion of substances as the cells are being reconstructed.



The method of fractional engineering is used, as a rule, for a significant
overlappping of tasks. It is a method of calculating convective flows during only slight
changes in the mesh.

Problem solving methods.

When the FENIKS software package was created, new implicit "ROMB" diagrams
were developed for solving various types of equations of computational physics. The
necessity of such a development was dictated by the fact that the traditional implicit nine-
point difference diagram on meshes with considerable deformations leads to large
inaccuracies. In the "ROMB" diagrams, just as in the DS5; method of solving the migration
equation, the approximation is constructed within the boundaries of one cell, whereby
vajues of unknown functions are used in the centers and along the edges of the mesh cells.

"ROMB" | 12-18}] diagrams have been built for solving

equations of thermal conduction,

equations of thermal conduction talirg into account the {temperature]
break-off (T # Te # Ty),

typical hyperbolic systems equations,

gas dynamics equations,

equations of migration in P and in quasidiffusion approximations,

migration equations of heat radiation in the Py approximation.

Numerical studies [ 14-18] conducted have confirmed that the "ROMB" diagram
ensures satisfactory precision on meshes with large deformations.

In FENIKS gas dynamics equations are computed by using the implicit-explicit
"RID” [17] technique, thermal processes by using the "ROMB" diagram [15], | 18], and
migration equations by ustng the difference diagram based on the DS;; method.

The "RID" technique incorporates both an explicit diagram and the ability to
determine the pressure at a given moment 1n time by using the solution to a diffusion-type
equation derived by the linearization of both systems equations of gas dynamics recorded
for viscous pressure and equations of state, The "ROMB" diagram is used to solve
equations for pressure.

The simplicity of approximating boundary conditions and one-time calculations of
thermal conduction in the mesh cell when using the "ROMB" diagram should be noted.



BIBLIOGRAPHY

_—

. Neuvazhaev, V.E. and Yanenko, N.N. "One Method for Calculating Gas Dynamic
Movements in Non-Linear Thermal Conduction.” Papers from the V.A. Steklov
Institute of Mathematics. 74, 1966, pp. 138-140.

rJ

. Gadzhiev, A.D., Lykov, V.A. and Shirokovskaya, Q.S. "Calculations on the
Combustion of Laser Targets Taking Into Account the Spectral Nature of the Migration
of Charged Particles.” Preprinr of the INM AS USSR, No, 92, 1980.

Lt

. Kuropatenko, E.S.., Ogibin, V.N. and Orlov, A.l. et al. "Library of Neutron Consiants
BAS-78 for Calculating with the Monte-Carlo Method.” In the book: Report Theses
from the 3rd All-Union Scientific Conference on Safety Against Ionizing Radiarion ar
Nuclear-Technical Facilities. Tolissi, 1981, p. 539.

A

. Yanenko, N.N., Frolov, V.D., and Neuvazhaev, V.E. Izvesriva SO AS USSR, Series
on Technical Science, 1967, 6, Issue 2, p. 74,

3. Gadzhiev, A. D. and Shirokovskaya, O.S. "On Numerical Solutions of Two-
Dimensional Migration Equations in Curvilinear Coordinates.” Zurnal vychislitel'noi
matematiki i matematicheskoi fiziki, Vol. 16, No. 6, 1976. pp. 1605-1609.

6. Varganova, L.F. and Gadzhiev, A.D. "Numerical Methods of the Continuous Mediam
Mechanics.” 1974, No.5, p. 27.

7. Gadzhiev, A.D. "T| -Method of Solving Two-Dimensional Nor-Steady Neutron
Migration Equations.” Zurnal vychislitel'noi matematiki i matemaricheskoi fiziki,, Voli.
16, No. 4, 1975, pp. 969-987.

8. Avrorin, V.N., Bunyatin, A.A., Gadzhiev, A.D. et al. "Numerical Calculations of a
Thermal Nuclear Detonation in a Dense Plasma.” Fizika plazmy, Vol. 10, Issue 3,
1984, pp. 514-52].

9. Troshiev, V.V. "On Classes of Meshes Allowing for Conservative Approximations of a
Two-Dimensional Operator of Migration by a Trigonal Difference Operator." Zumal
vychislitel'noi maremariki i matematicheskoi fiziki,, Vol. 16, No. 3, 1976.

8



10.

Tl

12.

13.

14.

15.

16.

17.

Hirt, C.W., Amsden, A.A. and Cook, J.L. "An Arbitrary Lagrangian-Eulerian
Computing Method for all Flow Speeds.” Journal of Compuaational Physics, 14,
1974,

Horak, H.G. et al. "An Algorithm for the Discrete Reasoning of Lagrangian Meshes.”
Journal of Compurational Physics, 28, 1978.

Gadzhiev, A.D. and Pisarev, V.N. "Impiicit Finite Difference”"ROMB" Method for
Computing Equations of Gas Dyramics with Thermal Conduction.” Zurnal
vychislitel'not matematiki § marematicheskoi fiziki,, Vol. 19, No. 5, 1979, pp. 1288-
1303.

(Gadzhiev, A.D. "On the Convergence of Implicit Finite Difference"ROMB™ Method of
Computing Hyperbolic Systems Equations.” Zurnal vychislitel'noi matematiki i
matematicheskoi fiziki,, Vol. 22, No.4, 1982, pp. 871-879,

Gadzhiev, A.D., Pisarev, V.N. and Shestakov, A.A. "The Method of Computing
Two-Dimensional Problems on Thermal Conduction on Non-Orthogonal Meshes.”
Zurnal vychislitel'noi matematild | marematicheskoi fizikd,, Vol. 22, No. 2, 1982, pp.
339-347.

Gadzhiev, A.D., Pisarev, V.N., Pykovanova, V.V. and Shestakov, A.A. "TOM-I
Technique and Program for Solving Two-Dimensional Equations on Thermal
Conduction.” Voprosy Atomnoi nauki i tekhniki. Seriya: Metodika i programmy
chislennogo resheniya zadach matematicheskoi fiziki, 1985, Issue I (16), pp. 30-42.

Pisarev, V.N. "On the Parametric Series of the "ROMB" Diagram for Non-linear
Thermal Conduction Equations.” Voprosy Atomnoi nauld i rekhniki. Seriya: Metodika
i programmy chislennogo resheniya zadach matematicheskoi fiziki, 1986, Issue 2, pp.
67-75.

Gadzhiev, A.D. and Lebedev, §.N. "Explicit-Implicit "RID" Method of Calculating
Gas Dynamics Problems.” Voprosy Aromnoi nauki i rekhniki. Seriya: Metodika i

programmy chislennogo resheniya zadach matematicheskoi fiziki, 1987, Issue L, pp.
49-63.



18. Gadzhiev, A.D. and Shestakov, A.A. ""ROMB" Technique for Computing Two-
Dimensional Equations of Radiation Migration in a Multiple Group Py Approximation.”
Voprosy Atomnol nauki | tekhniki. Seriya: Matemaricheskoye modelirovanive

Jizichekilh protsessov, 1990, Issue I, pp. 41-47.

.*?534’”5% G 5'JAW5TM @czﬁ'ﬂﬁf‘““

vser AD¢ sofod)'se %(,;Mfmf_

ﬁmtpffzv'%

10



SESSION B

Algorithm Development I1

MIMCZL Code

-7 - B M — oy
0T Solving Protlems in Centinuia Yechand

] - T MR ! - M IT e Tr ot
Sofroncv 1.0, Vinckurcvy C.A., Zmuskke V.Y,
T o e - il 4 il
Jigtzrey FL4., Saraev ;.A.

me Ll y LI B R — - < 3 - 4 =
Tre ¥THCZA ccde 13 ntenden or Two and three-Jimensional

e T AT aataly e Falll T =
Limins I AT \.a':uf.._..._.,u. =

A M R Tt o Fa AR T T o ST T e v, ] e £y - 3 v
tigs, hear concuction and other wrysical Crocesses can pe in-
~ A S s ma N el R FrmT coTrsd e - A~ P ATNEST A
CouGed, J4s maln Trinsizisg that 3erved thne sass o MIVWOTA

T T : 4 ] E - - < e O ST B
are ag IDLIDWE:D 3DLITTINg Ty Toysical nooeesses; splltting the

— -.rL-...r [in R
-

o it A - ot e S -~ [ al=Y il a - S A Zales - . hal=Te ot o Yo L
scivtion recion Into zubT =L V- B .,-.,mC_l..‘_..u_.,J. - ec,..q'.a.i: i n i
Siion se ™ oouadranoi e 2ms revakzamal o gridg Tas s
g el gt - PV LIRS ST W P A S 3 S i U A i e wdd - Y A
l,___;.:,,._:r.._l_.,i.,..“:‘. - —‘r'-‘r-m;_:_ﬁﬂlﬂ—/—‘ﬁd:!ﬂ' Ehat=N) Ayl ol e ey “c‘:_:”rdﬂs'—-
LR el IO I O TP~ ek a il oo [ERFPY- Far i b U S - Ry A A U W e - e P Ty

-“‘ - = . '
rd Flm wlna e = mgm i o B L el =T, SAn e Ao T e nr-\—v-n{lr-.-lm,- ey -
L sew wdao [ S e T T Tk o wmiet s W e e T e e _____J Vol it T L L
im e e o TR o mam e mane trmdee T s T 2o A g oo - -

EEC e e e e s saaw e e ed e o DL e mTanL.Sla Ll lE=Tl Ll SeeT
v e - me - R atata o lh iy [ MT d’GH" . . ;‘-F"t_' .
- o .o e e o — [P e ma i ke MR o m e o dme a—a ay - ) - e S P

. . - .

oA cls3% 0l —rmnl o g R smeaemim s ot e e m aaegm e o 2 e
ehe e [ P gor} - e e m e aarad Tlimm e = o T S - - T = o

10,000 2 1C00,CC00 WINCZL codes 2ll.w o 7m2rTteorm o m o wids soacr-

_ = - — - 3 P s = .
TV T i ™ P L ] [a-Senl T S e T - —_ L
F '..l?.*uu._..,._. dleiad Rl oowr WMTOoOT D2 D INA] SnaaTrec L.WS.
= \ —



/. f/&iﬂ W 75 9‘5“/0"07V4M,(, ﬁ/%;//é O(ffssefy 57(4%/
A swaty sdgvss P,

< 7/'0/'%’) /0475/21( Jrore55es, (corint b Z /9(/ =4 M)

“D Mf/vﬁﬂ/oj7//

ok Loves stys b des Send-

2D pobfpres  car b Ay Wik P 30wl
— Ml'mﬁ% /5> wnllee 1. Frtan 1/5!}7 e Swit preplocess oy
_ M ardhire J%éﬂ/ %, o7 esT 0 Yehes
— MR is s b Shedied 7{( firkay Betrpee.

Thetr  codes

- oy M Vé{ /”_ yoLe550rS- % 4/54 %ﬂm Sk
word, st U Aishbvley processyrs.



mimetA

j%*ﬁ

NTMOZA Code
for Solving Problems in Contimuum Mechanics
Sofronov I.D., Vinckurov 0.4., Zmushko V.V.,

Pletenev P.A., Saraev V.A.
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The MIMOZA code 15 intended for two and three-
dimensional problems in hydrodynamics: elastic-plastic
material propertlies, heat conduction and other physical
procesges can be Included. The code /1/ was designed for
ELBRUS-2 computers besed on SIGMA code that successfully runs
on BESM-6& since 1967. The main principles that served the base
for MIMOZA and had been verified within SIGMA are as follows:
splitting by physical processes; splitiing the solutilon region
into subregions ( computation regicons |; applying regular
quadrangular and hexahedral grids for two-dimensional and
three-dimensional calculations, respectively, with the motion
oY these grids not neceagerily colnciding with the material
motion; using preblem-oriented languages to speclfy data and
to control the computations. MIMOZA 1s orlented %o & class of
problems where the number of points ranges from 10,000 1o
106,000. MIMCZA codes allow to perform a wide spectrum oI
caleculations and to describe highly sheared flows.

For two-dimensional and three-dimensional hydrodynamics

‘ ans b to FPEEW
5 H# B[f’scwﬂami 6/ SI6ME ..f@rs% |
| ‘ ’ oH o meflods.
Me?U: (W /h,oa mdﬂ,wjﬁ 53( ) )

welew RSk _j[eld ;ﬂ;:;f:l d%ﬂfﬁbk%15¥€ts

i Stgma f,’lje.;r;) o S om
tout )

fings



2

equations, MIMOZA uses Eulerian - Lagrangian technique, which
is now the most efficient one for calculations of high
distorted flows. For two-dimensional case, the whole solution
region 13 gplit Into subregions. A4 regular quadrangular grid
i3 constructed 1In each subregion. The effect of the
computatlonal subregions on those sharing boundaries with them
is accounted via 1nner Dboundary conditions /3/. Two-
dimensional equations are solved In two stages: Eulerian and
Lagrangian. For the Lagrangian stage the nodes are considered
frozen In the material and move with 1t. Por the Eulerian
3tage, & new difference grid 1s constructed where severe
distortions of the previous grid are removed 1f possible. Then
the values are mapped from the previcus grid to the new cne.
The soluticn for the system of three-dimensional hydrodynamics
equations bases on equations written In lagranglan - Eulerian
coordinates with one Eulerian and two Lagrangian variables
74/, The famlly of coordinate surraces corresponding to the
Tixed Eulerian variable consists of planes. The same routines
as in two-dimensional case are used Iin each plane for grid
design, value mapping =2nd boundary condltion exchanges hetween

supregions.

Two-dimensional hydrodynamics equations
1. Splitting into subregilons
Splitting the whele solution reglon inte subregions for
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one-dimensional gas-dynamic equations is proposed in /3/. This
method 1s ported o 1two and three-dimensional cases in
SIGMA/2/ and MNMIMOZA, respectively. Usually, physical
characteristics differ from one subregicn to eanother. For
boundaries between adjacent subregions, sliding lines are
automatically introduced that 1s the lines on which the
following requirements are gsupposed: pressure equality and
normal veloclity  component continuity. Immer  boundary
conditions can be sgpecified without sliding, wlth friction
etc. The algorithm for sliding line computation is to divide
the contact surfaces i1intc "light"™ and "heavy" (slave and
master) that is those for which pressure or velocity are taken
a8 boundary conditions. The stabllity conditions for such
algorithm depend on boundary cell masses and Courant numbers
and are not restrictive /5/. Splitting into subregions
permits to cover a geometrically complex region with a
rectangular grid, calculate easily the inter-material siiding,
select the grid that 19 the most suitable for the flow nature.
2. Lagrangian stage calculations

For lagrangian stage, the gas motion 13 deseribed by the

following differential egquations:

= - é grad (p+Q)

= il .

[T 2



%@ = —p.dive ;
de d¢1/
B - ey P
p = P(p,e) ,
wnere 2 = {x,u), u = (v,w).

Quadratic viscoslity 1s computed as :
D , if pn*ﬂ( pr\ ;

Q- = 4] el 2
- =% t ZBh2(prw1)3{ (ﬂn— E nz‘} . it pn-u.; pn ‘
T 0 0

dere B 1s the viscosity coefficient, T - time 9tep, h -

typical cell size. For system integraticn, a difference scheme
is used which 1s bassed on D sScheme /€/ and 1its extension
reported in /7/. In other words, we take a rully rconservative
acheme and then add spherical test correctiona. The time stepD

15 seiected as follows:

(0.7 v 1
T = mi‘ﬂ '{ y - L-K
Cl; L] . -
1 Lk L (JVL X BB l"] kl J
wnere Uy - sound speed, ¥V - amount of cell rotation, with

resDect 1o the symmetry axis. A smoothing procedure similar to
that reported In /8 18 used t0o sSuppress short wave
perturtations. Smoothing 13 asccomplished by the fourth - order
Jperator with respect to velocity components relatively normal
0 grid lines: Zo°" = (I - (n.e)*pudid

The difference approximation for A has the form:

'3
(-‘u)k = _H; I:Mlv;-#i(uk*!* uk) - Mk-é(uk - uk—t)]
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where M - planar mass of grid nodes (the sum of plansr
masses of cells with the given ncdes belng their vertices):
uh&.uu_i - planar magses of cells, x - index alcng the grid
line, n - smoothing coefficlent.

3. Eulerian stege calculations

Moving quadranguiar grids in MIMOZA which are not relisted
to material allow to perform calculations with strong
distortions. After the Lagrangian stage 19 completed, a new
difference grid 1s constructed. It computes all thermodynamic
vaiues and velocities from the previous grid. .

Two approaches are used to construct a new grid in
MIMOZA. For the first approach, the node coordinates of the
new grid are usually obtsined from the previous grid nodes
which are the nearest neighbours of the given node. Severzl
algorithms exist for such grid construction and the algorithm
number should be specified when initlallzation 1s performed
and can be changed when computing. These aigorithms will be
further referred to as local. For the second approach, all
internatl grid nodes are constructed from specified nodes of a
region boundary.

Grid construction with local algorithms

Al present, NIMOZA contains about 30 algorithms which are
used to reconfigure the grid. The position of some points may
be never changed that 1s they remain Lagrangian. The moat
Irequent slgorithms include those which conserve (a) straight
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lines from one of the familles on the difference grid, (b)
equal or specified ratics for distances between difference
grid nodes, (c¢) equal angles at which line segments of a
difference grid are observed from a given point. These
algorithms often sallow to construct an acceptable grid and
maintain 1its configuration for a broad class of geometrles
when computations proceed 1though 1t requires considerable
glforts. A set of more complex algorithms is also availlable
which provides a higner automatlzation level but each
algorithm has 1itg own scope.

vonfiguring a grid from boundary peoints. To configure
reguliar quadranguiar grids Inside a region using boundary
points. 2 simplifled algorithm from /%/ 18 used. The lines of
one rfamily only are consecutively constructed starting rrom
TWO Opposite boundaries. The algorithm 1s based on geometry
considerations.

Yalue remapping

The values specifled on a difference grid when rezoning
it are recomputed using the FCT algorithm 1deas simiiar to
those from /10/. The algorithm relies upon directionai
splitting and using a one-dimensional higher accuracy
algorithm. Bigher accuracy 1s acnieved by Intreducing in-cell
distributlon for the values to be remapped which differs Irom
the constant. The distribution 1is 1introduced so that

convective terms should be recomputed wilth 2 second order



accuracy on smeoth solutions.
let VY, be the vaiues of a quantity coatained iIn
three consecutive cells. Then the distribution of this

quantity in the average cell is selected as follows:
1. % <w, <y, ; in this case Ay =min(y -v ,v,-¥ };

¥,-Av+0.5, 1f = € (= +x )+0.5
wlx) = { v +Ap+0.5, 1f = > (x,+x ):0.5

2. w, <w, <y, ; 1o this case Ay =min(y -u,.¥,-v,);
yz+ﬁv-0.5, iT = g (x2-+-x3)-0.5
vlx) = { v -Ay+0.5, 12 = > (x +x )+0.5
In all other cases the in-cell quantity distribution is
assumed 1o be constant. Furiher a usual "donor”™ cell algorithm
1s used.
Three - dimensicnal hydredynamics equations
Consider dirfferential equations of motlon In coordinates
including two Lagrangian and one Eulerian variables. These
equations are used for difference appreoximation:

FerBE-) 5%

Jo  w Bu __1.0p.

5T * =" 39 G

s B R -G
g_;.zu-g%'g;

d= 0z w

ﬁ=u~a’g';’
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where uw,o,w - corresponding velocity vector components in
original cylindrical coordinates with respect to variables
»,z,0

The expliclt difference scheme approximating these
equations is constructed so that 1t should be equivalent to
the two - dimensicnsl D scheme /4/ if the motlion exists which
does not depend on the variable 8. Convective terms occurring
gue to one Eulerian variable are approximated in "upstream”
marnmer to ensure the approximation stability. Density and
internal energy variations are computed on a single time step
in two stages: lagrangisn and Eulerian. For Lagrangian stage,
the cell boundaries are assumed to move with material and cell
masses remain unchanged, which 18 achieved by introducing an
additional ILagrangian variable. For Eulerian stage the
convection terms and  quantities obtalned from Lagrangian
stage are used to compute the values on angularly fixed
difference grid.

This method for rumerical three - dimensional
hydredynamics calculations cconsists of splitting the region
into sheets, each of them corresponding t¢ a certain value of
the Eulerian variable ( angle ), thus the task 13 divided into
miitiple two - dimensional tasks exchanging data. Data from
one sheet are sometimes sufficient, for example, for rezoning
the grid on a sheet, remapping values to a new difference
grid. In ithls case, the code uses the same computation modules
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as for the two - dimensional case.
The code organization

The MIMOZA is written using FORTRAN pre-processor SWIFT
711/ which allows to obtain varicus code modifications from
the same sSource.

The code comprises a service procedure Xermel and a set
of handling and computation routines, the call sequence for
these routines can be specified with a command language. The
main routine controls the code operation by analyzing the
command language using service subroutines. The service
subroutines are divided into two groups. The first cne relates
to the lexical analyzer which assists in opersting the command
language. The second group includes routines for local

databage operatiomn.
Local database
For dynamic operation oI FORTRAN grid arrays they are put

into a gingle common block array. Each sub-array is identified
with 1ts name and the number of a computation subregion which
it relates to. Service subroutines permit to find sub-array
locations, o create and to remove them. Since the local
database operation 1is simple, users can easily write their own
computation or handiing modules by exploiting the code
capabilities.

Command language
The commend language consists of instructions and
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instruction data. Data frequently consist of key parameters
which must be ordered according to syntax. Initialization
instruction can be taken as an example of the instruction
where Information 1S relatively hard to specify.
Computations and interrupts

Transition from one time step to another 1s accomplished
by computatlonal routines. Each computation routine has =a
standard name: PROGO1, PROGOZ etc. Each computation region may
have 1its own set of computation rouiines which can be changed
with special instructions. The COMPUTE Instruction performs a
call within a computation subroutine loop through computation
routines specified in computational reglons. Prior to COMPUTE
instruction compiete computation conditions can be specified
and any potential action can be provided at a given time step
at any time.

Initial data caiculation

The HND instruciion allows to calculate the initial data
for 8 wide spectrum of iwo - dimensional problems. For three -
dimensional problems, geometiry specification is restricted. In
MIMOZA, the BND data specification language 18 hased on its
predecesscr from SIGMA/10/. The RND data are divided into a
1ist of geometiric obJects, reglon boundary geometry
description, regional informaticn. The 1ist of geometric
objects 1includes descriptions of points, straight Ilines,
circles and Iines (curves which consist of stiraight line



11

segments and arcs). Geomeiric object identifiers consist of
characters and digits,with the flrst character specitying the
object type: T - point, P - strailght line, K - circle, L -
line. A point may be determined by coordinates, intersection
of straight l1ines, 1intersection of a straight line and =a
circle, 1intersection of circles and so on. The lines are
gpecirfied with a 1ist of bending points on a8 curve and objects

which connect them.
Region description

Hegion descriptlons rely upon previously specified simple
geometric obJects. For each region, iis boundaries, the point
locations along the boundary must be specified and algorithms
for configuring the grid inside the region should be given.
Some descriptions can be omitted, then the routine selects
descriptions by default. In addition to region gecmetry
initial and boundary conditions shouid be set. The whole
specified information 1s controlled and full diagnostic data
are generated 1f an error occurs.

Numerical examples

Froblem 1. Pilgures 1 - 3 show 1nitial geometry and
computational results for an explesion produced in a cylinder
cavity filled with a material having a density lower as
compared to the surrounding density. Initially, energy was
uniformiy disiributed in a spherical source. Gas dynamics was
computed for the cavity and elastic- plastic properties were



t2

considered for the surrounding material. The grid is rezoned
and values are mapped for each tlme step. It 1s seen that the
grid remains reliably regular even though strong distortions
are observed. The regicn of initial energy release was traced
with concentraticns; the level of 0.5 18 shown in figures.
Till later times, the calcuiations were performed by moving to
3 spherical grid.

Problem 2. To 1llustrate the computatlional capabilities
for Eulerian problems inciuding i{onization kinetiecs and medium
dissociation consider a powerful explosion (like "Teak")
produced in model atmosphere 2t a high aititude. The kinetics
includes time variations of molecule , atoms, molecular and
atomic 1icns concentrations. Figure 4 shows ion and electron
temperaiures. Areas of material non-equillbrium state are
cleariy observed on the plot. Filgures 5§ and 6 show
iocalization reglons ror molecules (black), neutral atoms
(blue), simple (green) and double (red) atomic ions. Highly
non-egquilibrium medium state 18 Indicated by a high level
lonizsticn observed In aress where the temperature 1s less
then 0.5 eV.

Problem 3. Three - dimensional calculations for a
spnerical body Impacting a plane target at an angle. The angle
between veloclty and normal of obstacle 1s a = 60? initial
veloclity 1s u = 5. Initial target density 1s 2.7 and that of
the ball Is 18.7. Both regions used the following equaticn or
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stale
- Prv, if p<-Prt
pep L, =
° else »p

'0.0 p ™
- [} —1 * '(- »
where p, . [[p] + CyprcE-gd

n C p.;,

™

i T——

where p - initial material density. The constants are given

in the table:
P, Ca Cn C'T Prt
body 18.7 | 2.88| 3.4 | 1.33 0.5
target 2.7 | 8.5 | 3.5 | 1.33 0.2

Figures 7 and 8 show the grid for initial time and for the
time where the ball has penetrated the target deep enough. The
vold inside the ball nhag disappeared.
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