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PAGOSA: A Massively-Parels]l, Multi-Material BEydrodynamics Medel
for Three-Dimemicnal Righ-Speed Flow and High-Rate Material Dedormation

Doug Kothae

Technical Jiaff Member
Flyid Dynamict Groug T-3
Thearetics{ Divirion
Loz Alamos Nationsi Laioretory

Az ovetview of the phywcal models, numerical methods and algerithmy, and parailel itopiementation wil
bw given fot & new masgively-parailsl madel rmown aa PAGOSA. PAGDSA i an explicit, 3-D muiz-maserial
hydrodynamics code designed to modsl probleme invaiving high-uesd fow agd high-rate defarmation of
solid materials. It has Daea developed over the past 3 ynars on the Conneciion Macmire parallel suparcoms
puter by & small team of comphtatinnal phywicista, momencal analysts, and eormpycer saentista sl tha Loa
Alames Natiogaj Labaratory (LANL). Finite difarence sppraximations to the continuum mesanaical cone
versation eguations are wofved in PAGOSA i an Enlesian ftame on & fized, orshogenal harshadral gnd with
a Lagrangian/ramap algorithm. PAGOSA employs a setend-order accursts predicioi~<orracior Method for
ths Lagrangian passe agd a third-ordsr, vap Lear-limited upwind acheme for the advection piiase. A usique
parsllel implecmentation of Youngs' method for reconnkructing interfacss from matenal voloms frasiion dats
enables & Lagzangisn-iie rapresentation of mazeriel intarfzem having arbitranly compias topoiogy. PAGOSA
i writtan in the new data paraiial Fortran 93 linguage, and was earfully desigoed and programurssd to rin
ot optimal cHicieney on SIMDalike roachines such 14 the Connzetion Machina CM-290 ard CM-8 a2 LANL.
Implementazion and periormance of PAGOSA on MIMD parsilel computars euch as the Intel and Neube
will elso be discussed, PAGOIA hos damonutearad quite impreasive performanss an camplax hydredyramc
simmlations, runniog 10-25 times faswer than & very similer seriz! code at LANL that rune on one CHAY
Y-MP procesecs. Ths properties and capabilition of PAGCOSA will be illustrated with severs] reprisancative
taicuistionn.
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MODELING FLUX COMPRESSION GENERATORS
WITH A 2D ALE CODE

Robert Tipten
Lawrence Livermore Nanonal Laboratory
Livermore, CA

ABSTRACT

A 2D MHD ALE (Arbitrary Lagrangian Eulenian) code has been developed
to aid in the design and understanding of magnetic flux compression generators.
The hydro treatment 1s Lagrangian ahead of the armarure-stator contact point and
Eulenian behind. The code racks the locadon of the high explosive detenation
front and deposites the chemical energy behind it. Realistic equanons of state are
used for the deronation products, armamure and stator. Swmength of matenal effects
for the armarure and stator are included. The magneric diffusion equanons are
solved implicitly and the magnetic forces are inciuded in the hydrodynamic
equations. The code has been used to model the performance of a coaxal fiux
compression generator designed at LANI, as well as a continuously variable pitch,
continuously variable conductor diameter helical generator designed at LLNL.
Calculated results for each generator are presented and in the case of the coaxal
generator, compared with data. The limitadons of the code are discussed.
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A.N.8ykov, B.L.Voronin, A.G.Xeczub, S.I.Skrypnik,
I.D.Sofronov, A.V.Urm.

Numerical Simulation of Heat Conductive Medium Spatial

Shoclkk — Wave Movements in Bulerian — Lagranglan Coeordinates.

1. The numerical simulation of many physical processes of ap-
plication value need solving nonstaticnary gas dynamics problems
with account of hzat conductivity where movement 1S describeg by

the following differential equations system :

{%;-= - p div U
5 {1
—g;——=—j—];gradp
de Sl
ot

= _ P div U+ —%—div( X grad 7 )

Here p 1is density., U is mass veloclity, T 1s temperature, P 18
pressure, £ 1s specific 1nternal enerqgy, ¥ is heat conductivity
factor.

The svstem of ecuat:ions (131 1s closed with neat conaduct:ive
medium equat:ons of state: P = 9{(g,T), e = €(p,T), % = x(P,T}

The study of specific phvsical phencmena may vigld Drogiem
faormulations of wvarlous level of complexity and tapour consumo-
tion: from one-dimensional to three-dimensional, so 1t 15 dssirabh-
le for the developed numerical technigue to allaw 2tfective orob-
lem solution at anvy of spatial formulations. In this connectlon
1tmpnrtant i1s selecting variables and coordinate svstem types used
in the numerical technique.

The proposed technique uses two mutually orthoaonal Sulerian
coordinates and one Lagrangian. It 3llows most naturally oomputes
problems with geometry 1n form of a set of laminated FeaIOons Wiih
possible heavy relative sliding, the contact reglon Intsrfaces
neing traced with the Lagrangian wvar:able.

The account of nature and srientation of processes at sclvinag
particular problems leads to necessity of emploving curvilinmear

coordlinates. With this ourpose ¢ specral, orthogonal, ocurvilinear
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coordinate system is developed lncluding, as a specific case, cy-
lindrical, spherical, and toroidal-type coordinate system [1].
These coordinates are defined by setting quite smooth curve called

a support line in plane (R,2Z) (Fig.l).

F R
AlX,¥,Z)
=upyport Line
‘o 3 0
o Fig. 1
If R =R (s5) is a parametric support line eguation, then
¢ a the following variables are selected as
Z =7 (3) . :

o 0 coordinates

r - a distance from the considered point { point A ) 1O the
support line;

S — a suppoert line arc lenath to the trace of point A on 1t (Lmnﬁlj

Mt — the anale of (R.Z)-plane roration arcund 22 axis.
Relation between Cartesian ccordinates (®,y.,2) and curvill-

near {(r,s.d4) 1s expressed by the followlng correlations:

= [r.-sinB(s) + RD(S)]~COSm ,

v {r-sinB{s) + Rﬂ(a)]-alnm . G

z r.cosf(s) + ZD(S}

Conformably to a concrete problem the support line 1s usually
selectea similar toe some contact poundary under condilition that the
form and position of the support line on the plane {(R,7Z) satisty
the coordlnate sysiem non—deaqgeneracy condltions: 1 + %.r > @,
r-sinfl + Rn > A, where KZ-EgéE) ls supporit line curvature.

In the proposea technique (RAMIES) coordlnates s,y are iPule—
rian and ceoordinates r 15 renlaced with Lagrangian r and the com-
cutational arid 1s qgenerated by intersectlon ot surfaces r=const,
s=const, y=Eoonst . The RAMZES-technique finite di1f<rrence
algori1thms are based on twWwo mass velocltvy vector decompositilan:

Un‘vniun 15 an orthogonal Jdecompoosition in the 1nmiti1al ceoordipate
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system basis (r,s,yg) and U,Uo,uo is an oblique decompeosition in
the basis related with the problem computational grid (Fm,sk,ml),
= - N -
thereby U U0 le 0 N
racterizing computational grid nonorthogonality [2]. Such an ap-

W where H and H are parameters cha-
3 0 12 13

proach allows to considerably reduce negative effect of computa-
ticnal grid nonorthogonality on computational results quality whi-
le retaining capabllities of physical region set continuous comou-
tation as the constituent U is continuous at the contact disconti-
nuUity.

For some complex geometry problems one fails to compute in a
s1ngle coordinate system, on a single computatiornal grid. In this
case the problem geometry 1s split i1nto fragments each of which 1s
computed in 1ts own ceoordinate system, on its most suitable comou-
taticnal grid. Fragment intersection is provided through exchange
boundary conditions of type {3], at that the boundary conditions
transfer scheme works allowing to run parallel fraagment computa-

tion.

2. Specificity of the problems being computea anc exilstence
of Laaranqgian family Fm= const lead Lo nonorthogonal compulational
garids. The numerical solution cuality i1s largely acepencent on the
manner of aporoximating the vector ocoerator grnd =1 Gh 15 present
1N the initial eguations (L), Considering as an 2xamcle the Feart

conductivitiy seguatlon
N
#t
one can see that the use, as 1t 1s usually the gase, of iocal ftem-

= div € ¥ grad T 2, {3

plate {(for example, 9-point in a 2D case) feor hiahlvy nonorihoconal
arids mav lead to temperature def:inition needed Lo aporaoximate
aradient compongnts by exirapolatlng using template temperature
arid values. ITn this case one can observe deviatilion of Numerical
solutlion fraom exact 2ne wnilich coulg net be 2liminated Hv <=pace-
Ei1me computarional qQrid refinement. Approximartion can be | moirovedq
by extending the arid temolatz ne2cessary for 2bftalninag the corrse-
ponding difference operator GRAD s 1t is cope 10 Ssome Reat con-
cuctivitwv TDh =scuaticon compufation T2cnnigues .,

Far the RAMZES Lachnigue 3 method nhas hHeen JeveLlcbed ang ~o-—

alir2d usina ronlocaal, time-varizble tempilate allowinag to 2limena-
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te wvalue extrapolation at approximating gradient components on
grids of arbitrary nonorthogonality level. The essence of the tec-
bnique is that derivatives with respect to the coordinates defi-
ning grad components are approximated directly (similar to one-
dimensional case) with two-point difference, while the function
values comprising this difference are defined by 1nterpolation
with respect to the grid function ones closest (in the sense of
metric proximity)} to that point. At deriving implicit difference
schemes wusing this technlique we arrive to a finite-difference
equation system of the form

AGna—t: an+1 (4)

where A 1s a aqeneral form of weakly filled matrix. For such
systems an economic solution fechnigue has been developed. This
technique consists 1n Wuslng directional splitting and raducing
two-point difference of the sguation system (4), at the expense of
specific time approximation, to the equation system with the
three-diragonal matrilx

Ean+l TTrn4+lL

=Cu ' (S5
where A=E+é, E=E—§,A is a three-diagonal matrix, é LS & weakly
fillea matrix of qgeneral form.

The practice of numerous 2D anag ZD ~eat oonductilvitv zropblem
comoutations te<stifis2s that the ascheme usi1ng a noniocca. T=smplate
proves Lo be quite sultaple tstablie and monotoner allowina to b~
taln numerical sclutlons close to exact aones even on ccmputational
ari1ds of high lewvel of nonorthoaonality |, 1n contrast to schemes
on local grid temoclates.

S. The directional solitting method {the method of fractional
steps) appeared ana developed to mest needse of multigimensional
proolem numerical solutizsn «hen computers of relatively small ef-
ficiency are avallable. In the 195%9s that method was useq v NDoua—
las, Peaceman, angd Rachford to solve the 2D heat concductivity
ecuatlion (4,51, tLater the metrnod was extensively develobed bv  sa—
rious authors, 1n osarticular. M. N Janenko 1n pacer [&] voilformly
treats nunerous scnemes sinn fractional steos as weli as thelr
appliication o sSolving a areait var:etv ot problems incluclna .nul-—

fidimensional cas avnamics croblems.
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when the method was considered 1n more detail, it turned out
that tts use might be useful not only from economic polnt of view,
but also to improve abendlessness and accuracy of multldimensional
gas dynamics problem computations. In the method of directi~~al
splitting a multidimensional problem is split into a3 set of YT
dimensicnal” ones, the multidimensional computaticnal grid aopea-
ring as a set of one-dimensional grids of “one-dimensional” prob-
lems. These one—-dimensional grids are far from being always optl-
mal for their "one-dimensional” problem.

The concent of multigrid metheda of directional splitting s
that for the numerical solution of each problem of the whole set
of "one-dimensicnal” problems to use its most ootimal computatio-—
nal arid {7]. It means actuaily the use a quasi-reqular grid with
varliable numper of computaticnal points along lines at the compu-
tation of each spatial direction, while the number of points
along a fixed line mav be time wvariable. As at such an approach
the drid set of all directions doss not yet comprise a single mul-
tidimensional computaticnal grid, it 1s necessary to define 3 way
nf computation result exchange b2tween directional arigas. On the
basis of the muitigrid methoc the technigue of multidimensional
nproblem computartion Jsina Lacrancian directioan Jguaso-recular Jom-

mrutational aorids and —he rteennique for Eulerian 2ira2ctlon —ontzc

ot

1

counaary comDulations nave Tezn developed and oroarammed. st

52

them for 2D and oD preoblem computations allowed o lnor2ase <ompuy-
tation accuracwvy, Lo cconsideraniy lLmoprowve theilr apenalessness and
1in some cases to compute comblex 2as dynamlics flows retaininag chy-—
si1cal reglon boundary Lagqramglan mature Wnen b couid not be cone
in frame of 3 recular approach.

For problem of hiahly itrreaqular matter gas «vpamlc aovaments
or of heteroacenecous set of ohvsical reqions 3 method of concentira-
Tlons 1S used allowlng Lo combute such problems with reagular com-

outatiaonal 4arlds.

4. On the =Zasis of the develcpea technligue a1 2AMZES orocram
aomoiex bhas oeen develcopea 7370 The prodramse of She SOomDl 2w a2

wirthten 1n tne FORTRAN R Oaramming lanquadge uUs1nn 2 2prrascsme

SWIFT 9% "me Droarams orf Ihe comdtex ars fun o Alghly 2fFLiocionr
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computers ES-1066 and multiprocessor computer complex Elbrus-2.
There is a complex version for personal computer PC-AT. Structure
and architecture of the complex are quite universal. In particu-
lar, for the sake of convenience of a complex’s user an initial
data setting and program run contrel language have been developed
similar, for example, to SIGMA complex [19]. The programs of the
complex may be divided into the following parts from operationat
point of wview: the translator of itnittal geometry and other inlti-
al data language and the notation Interpreter; initial preblem cut
forming programs; time step computation programs; service-type
proarams.

Time step computatilion program structure fully reflzcts multi-
layver nature of propolem splitting in geometry, processes and spa-—
tial directions characteristic, for example, of 2D program complex
TIGR [l11]. Time step computational preograms follow the module
principle and are superwvised by a control module allowing o simp-
ly realize wvarious computatlonal modes using problem run control
language: one-fraagment and rmultilfrsament computations of 3I0,2D ana
1D prokblems. A separate module comor ises computations of ocomputa-
tional arid aceome2tiry characieristics that allowed to use elther
carresian or special curwvil.inear coordinate svystom whan computinsg
particular problems.

The technisue ind complex of AMZZS proarams nhave been festad
at a number of aultidimensicnal heat conductivity and Jas avianics
oroblems, 1n particular, at computing problems of heat wave col-
lapse, of cufe cooling, of adiabatic expansion of *Arese—axial Q35

ellipsoid 1nto vacuum having exact sotution.

A problem of heat wave collanse{17].
In a sphericai region the 1nitial temperature distribution
. ar%5
Tn(r,ﬂ,m)=(r-51nﬂ-51nmj 15 given, th2 egxact soluti2on of the

Initlal wvaiue problem for the heat scnductivity =auation

- I P | B
a1 a3 |+572 2 a7 1. ! e [TE/Z-SLDH-QT W2 Tﬁzz.JT
ot 7 GHT ! o J Z a1n0 lfﬁ? o1 ayl S l
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is of the form T(r,B,yp,t) = {1-3.6.t) -Tn(r,ﬂ,w),
This solution corresponds to the fact that initial profile at
E 1/3.6 continucusly increases jts slope and at t:}g,g any lar-

ge temperature wvalues are achieved at all the points.

The numer 1cal solution was obtained in region
™ .
{@=a=1,2=8, 9= on the ocuter btoundary sxact boundary conditions

=50
were set,

The compuration was run at constant time stes 1=0.80! up to
Lime t=@.25 in a spherical coardinate system. Spatial time grid
was chosen uniform 1n each of the directions: 4F=@.@55, AA=Mp=5 .

The error of numerical soiution Wwith respect to the exact aone
was not qareater than 3%, excluding regilons of maximum temoerature
agradients (B = @, ¢ = @) where a little agreater error was

observed.

A problem of cube cooling [13].

In a unit cube {(@=x.y.z=1} at inittial time temperature T=1
was set. On The cube bounaary at all later times temberature
T =3 was maintalned. In course or flme the <cuce <ools accor-

yundl
ding te rthe ii1near heat ccocnauctivity esquation:

FT F

+ +
3vz 3z2

T
3t Z

The exact sclution 1s of the form:

Tiw,y,2,00= P,y -y, t)-ah{z, t)

e
o —M-C2Z%ald "¢
P . .
wheres o, bt )= ) e - Ssin o2+t x
1
*=n *
The numeri1cal =olut:on was found 1n the Cartes=l1an cocrdimate

system on tne unlrerm orthoconal arild $W=<=W=¥z=@. 05 ina on "nonuni-
form “"parquet" tvoe arid. The compbutaticons were run At time srep
™=9.4al.

The error or numerical soturtion with espect to the exac: -~ne
«»as not areater than 2.59% on the orthoacna. iz oand 2.%% a0 on-—

orthadonal one.

A Droclem of aAdirafpartld 2xcansicon of Three—axl1al nas =sliilcsosT



into vacuum [147.
Initial geometry of gas cloud is ellipsoild with half-axes
equal to: a =3, a =2, a =1.
E. Y W x
The equation of state is ideal gas P=(p-1l}-p=, »=1.4.
Initial density and pressure distribution depends on the came

function, level lines of which are ellipsc:ids:

zr:fl z;rfl 2 %% yZ 2%

P o= (1-&7) P = (1-E9) = — > T .
a2 a Aa
o W i

B8oundary condition: Ph(t)z @.

The movement scenar:o 1is the following: due Lo presant pres-
sure cradient from the cloud centre to its boundary the cloud be-
ains to expand from 1ts rest state with transition to stationary
mode, At that the ellipscid form is retained, but half axes ratio
changes: the smallest half axis becomes the largest and vice ver-
sa. Exact values of cloud edge velecitles along half axes at sta-

tionary state ecual: Ux=2.364, Uw=7.17, Uzx=4 27, and half axes ra-

az ELY

tios arg —— l1.66, ——= 1.35.
a).‘: o &
The oroblem numeri1cal solutien was founa in a spherical coor-—
: i w LI . .
ginate system in the realon { 3 = H = > B = gy = S roue o time

t=30 corresvcondina to stationary 2xoandina. In Zulerian variables
A and @ the comburation used & rcoints ana 0 ‘_agranalan - 1D
points 1n the lat war.ant ard 29 goints 10 the Znd. 3pl:irtina :n
all the space variatles 15 uniform.

The error of numer ical solution with respecr to half axes n
poth wariants was similar and amounted to =1 .35%, wveiacLiy a2rror
of the 2nd variant was =3%, being a half that of rthe 1st vartant.
As spherically symmetric cloud spreading computatlons Rave shown,
1L 15 explained mainly with mprovement of ni1tl1al density 3Na
pressure profile on the computational araid,

The programs of the RAMZES complex on multiprocessor computer
complex Elbrus-7 are used Yo compute three-dimensiconal oDroblems oF
Q935 dynamics, of detonatlon gas gynamics. of heat concuctlvity aas

dvnamios, LCoempLCAT1IoNS WwWere run anag resylts were obtalnea for oo -

te 2 wWwlice and redIresentative 2D propiem olass as Ffor their phyvs:-

cal formurlat:i:on. The fechnigue andg o2radram moalementat  on Sharac-
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teristics allow efficlent computations at two—-dimensional spatial
formulation without additicnal computational rescurces.

The RAMZES proaram complex and technique, in particular, pro-
ved to be an effective tools for studying shock-wave processes in
point explosion problems applied in many spheres of science and
technology. L.I.Sedov provided an exhaustive analysis of self-
similar problem of powerful polint explssion and obtained its clo-
sed form soluticon [15]. However, of most practical interest are
nonuniform medium explosive process studies, in particular, stu-
dies of peoint explosions 1n atmosphere, density and pressure of
which depend on altitude. Examples of similar processes may De
provided by air explosicns at various altitudes. Medium nonunifor-—
mity lieads to two-dimensional (in case of single exploesions) or
three—dimensional (in case of multiple explosions) character of
nohstationary gas dynamics flows. Computations using the RAMZES
compiex programs allowed to numerically stuay the evolution of the
reqglon of shock wave as well as to describe gas dynamlics parametar
distribution wlthin the reqgion both for a single and twin axplo-
sion 1N exoonentlal atmespnere {167].

Nonviscous l1deal gas is considereg wlith adLabar exponent -,
heat conductivity and radcdiation are neobt taken 1nto account. Densi-

tw 0 and pressdre P of gas (atmospherz) wvary with altitude accor-
= z

ding to the law F=pu-e A, Drpo-e ﬂ. At 1ni1tral time, at the same
heiaght h ana distance £ from 2ach other two point expliosions tawe
place of eneray release € 2ach. The eguatlicon of state of conside-
rea gas 1s P=(p»-1).ce, »=1l.4. Atmosprere parameter values at exo-

lasion hei1aht are pn=1, Du:ﬂ. Fach explosion 1niti1al eneray ~elez-

1

se 1S giliven within a sphere of radius r =01 (the Ji1stance e -
0

-
“imed Iin gimensicnleses form sorresponding Yo the sarltabio 2 o= £ i

s A
wilbih Jensity ¢ = : .
i 1 -3
— sl
3 0
For fumnerical Studvy or Lhe above probliem two—dimensional com-—
Dunations of sinale 2xplosions (£ » ! and £ =) ) with energy ~e-
iTase  densitv Pr and  2¢ , respectlvely, 45 wel! 35 three-
> kM ’

Armens i enal combutar:on of two exolosicns, Scorrescondlnag ta fhe

- K i

case of £ =7, Wwith 1nltial =nerdgy release denctitw pe SSCh Ww2re a3 -
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de.

In case of single explosion of energy release € the qualita-
tive eveoluticn of the process was as follows. Due to atmesphere
nonuniformity, shock wave front movement wvelocity 1is not the same:
at the higher portion it is greater than at the lower. Therefore
in course cof time the shock wave region becomes elongated in form,
the volume of disturbance reqion being intensely increased due to
upward shock wave front propagation, while explosion products are
moving up. The shock wave moves upwards with ilncreasing veloocity,
i.e. there 1s atmosohere break affect (Fig. 2). The double energy
release computation results analysis shows gualitative coilncidence
of shock wave movement character, the simllarlty correlation being
valig, Iin particular, the shock wave position at time t of eneray
release Z2eg coincldes with the shock wave position at time Y2t of

energy release g (Fi1g.3).

Shock wave front position along axes vs time

at energy releasse & computation

u{
!
L
|




At three—dimensicnal computation up to time tln @.9-1 explo~
sions evolve as single ones independently, since time t1 explo-
sions begin interact (Fig.4). After explosion 1nteraction the po-
sition of the divergling shock wave front is between thes position of

shock wave fronts of single explosions of energy release g and Z2g

(Fig.3).

Shock wave front position

-
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MATHEMATTICAL MODELLING OF TURBULENT FLCOW IN MULTICOMPONENT MEDIA
©. V. Buryakov, V. F. Kuropatenko, V. K. Mustafin, L. P. Brezgina,

T M. V. Dodonova and I. R. Makeeva ,
( Chelyabimst 3

Introduction

The mathematical division of the All-Union Scientific Research
Institute of Theoretical Physics has been developing, studying and
implementing models of multicomponent and heterogeneous complicated
media since the end of the 1970s,

The main efforts have been directed at developing a numerical
method for calculating turbulent moticn of complicated multilayered
systems of various substances, including two-component mixtures,
These layers may exist in the initial state of the system or arise
during its movement owing to a loss of stability at the contact
boundaries (CB) between the separate layers.

Thus, analytical and precise solutions of dynamics problems
were found, and the properties of sclutions for systems of
equations describing the principal classes of known models of
multiceomponent and heterogeneous media were investigated in detail
for simplified models (isothermal gases, polytropic gases,
condensed media, uncompressed liquids).

Such a thorough investigation of the qualitative features of
the solutions occurring in medels of mixtures of substances after
shock-wave (SW) interactions and under the influence of massive
forces enabled a numerical method to be correctly chosen. This
method highly accurately reproduces the principal features of SW
processes in mixtures of substances (multiwave confiqurations,
change of concentration profiles) and is suitable for describing
processes with intensified relative movement of components.

The accuracy of the method is investigated using precise
solutions constructed for a whole class of characteristic problems
concerning the dynamics of multicomponent and heterogeneous media.

Terms describing the force and energy of component
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interacticns in a characteristic range of flow parameters are
calibrated in actual applications of the basic problem.

As a practical example of the solution of this preoblem, an
approach for modeling experiments on the mixing of liquids and
gases will be demonstrated within the framework of the mechanics of
heterogeneous media.

When discussing possible collaboration in this scientific
endeavor, then, besides the general problems, such as

—-the development of models of multicomponent and heterogeneous
media by taking into account new physical processes;

—-the investigation of the gualitative features of solutions of
systems of egquations for mathematical models of multicomponent and
heterogeneous media;

-the construction of accurate solutions;

~the developnent of numerical methoeds;

-the creation of cne-dimensional methods;

I would 1like to emphasize the special significance of studies
concerning the creation of theoretical and experimental methods for
investigating processes in mixtures of substances that hold great
interest for applications and, primarily, for mixing and separation
processes.

I will discuss in more detail the state of our efforts on this
problem.

The main result of our work, the numerical method (we call it
CMM, calculation of the movement of mixtures), is designed to
calculate one—-dimensional turbulent motion of a continuous medium
in Lagrangian coordinates assuming adiabatic hydrodynamics.

Homogeneous substances, in particular, explosives, or mixtures
of two different substances are acceptable as the layers in the
calculated systems. The layers are separated from each cther by CB
or evacuated gaps. Two~component mixtures can arise during
movement of the system owing to a less of stability of the CB
between individual layers and the separation of initially mixed
substances to form a stable CB.

The movement of a homogeneous substance is described within
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the framework of mechanics equaticns for a continuous medium by
taking into account the porosity, strength, egquilibrium phase
transitions, and gravitational acceleration.

The movement of a two-component mixture is described within
the framework of mechanics equations for multi-component and
heterogenecus media by taking into account the velocity and
temperature differences of the components, the variable internal
structure of the medium, the porosity, strength, equilibrium phase
transitions, and gravitational acceleration.

The thermodynamic properties of one-dimensional substances and
the components in mixtures of substances are described by
characteristic state equations. The state equations of a mixture
of substances dco not need to be known.

Phase transitions in a homegeneous substance and of component
mixtures are calculated and considered at the level of the state
equation.

The movement of a mixture of phases of a given substance or a
given component of a mixture of substances is calculated assuming

constant-velocity thermomechanical equilibrium.

1. Mathematical model of a hetercgeneous
and multicomponent medium

The conservation laws for a homogeneous substance have the
following form:
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p is the density, u is the velocity, p is the pressure, e is the
specific total energy, E is the specific internal energy, ¢ is
gravitational acceleration, & is the phase, v is a symmetry index
of the problem (v = 1, planar; v = 2, c¢ylindrically symmetric; v
3, spherically symmetric), z is the Euler coordinate, and t is
the time.

The hypothesis about the mutually penetrating continua
propesed by Rakhmatulin [1), which 1is wvalid for the following
assumptions, provides a basis for describing flows in layers of
two-component mixtures.

1. The particle size of the components in the heterogeneous
medium is much greater than the melecular-kinetic dimensions, i.e.,
the particles contain a large number of molecules.

2. The particle size is much less than the distances within
which the macroscopic or averaged parameters of the heterogenecus
medium or components substantially vary (ocutside the explesion
surface).

Thus, a two-component heterogeneous medium is a combination of
two continucus media, each of which is described by 1its own
velocity, partial density, specific internal enerqgy, pressure,
temperature, etc. These continucus media interpenetrate each other
and simultaneously occupy the same volume, The latter 1s also
valid for multicomponent media, for example, mixtures of gases.

The conservation laws for a two-component mixture have the
following form [2]
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v is the symmetry index of the problem, p; iS the physical (true)
density of the i component, ¢; and »; are the volume and mass

concentrations of the I component, u; is the velocity of the i
component, p; 1is the pressure of the i compeonent, T; 1is the
temperature of the i component, &; is the phase of the i component,
g 1s gravitational acceleration, and R and ¢; are the intensities
of pulse and energy exchange between components. The remaining
notations have the same meaning as above.

The equations given above are common for a number of
mathematical models of heterogeneocus and multicomponent media. The
specifics occur in the representation of the expressions for the
functions -51 and ii, which describe the force and energy of
component interactions. However, the presence in them as additive
terms of the volume forces R; and vclume energy scurces ¢; is

common to all representations of Rl and @ These functions have
the following form
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3. Results of numerical calculations

MAX is widely used for calculating various classes of problems. By way of
example, one can name calculations of two-dimensional corrections in using a
hydrodynamic method to determine the strength of underground nuclear explosions in joint
Soviet-American tests at the Nevada ang Novaya Zemlya test sites.

Several ways of calculating the convection flows and processes having strong
deformations in the contact surfaces are illustrated in the following problems:

1. The formation and motion of cumulative streams:
2. Hydrodynamic instability.

One of the forward-looking directions in creating new technologies for explosions
being used for a wide range of economic purposes, is the development and implementation
of cumulative charges. A grooved metal-faced cartridge of an explosive substance
comprises the base of the charge. Due to the complex processes of flinging and deforming,
either a high-speed compact element or a cumulative flow is formed from the facing
material. The facing 1s capable of performing various functions when it couples with an
obstruction. The task of creating a highly effective cumulative charge is today still topical.

One type of construction for an industrial cumulative charge having a conical shape
has been stuched. As a result of numerical modeling, we have gained an overali picture of
the characteristics of the compression processes and the deformation and motion of the
cumuiative stream. Figure 1 shows the stream’s shape at two points in time. A
comparison with the experiment is given.

The following examples are related to studies on hydrodynamic instability. The
study of hydrodynamic instability is exceedingly important when solving many applied
problems, in particular those that deal with energy cumulations. MAX performs direct
numerical modeling of impulse (Richtmeyer-Meshkov instability) and gravitational
instability (**TN -Taylor instability).

Gravitational instability,
The simplest modeling problem is being studied, in which a heavy substance is
lying on a light one in the field of gravity. Figure 2 illustrates the process of developing a
unimodal smalt perturbation and causing the separation boundary to interact with the upper
and iower rigid walls.

TN Name illegible in original Russian text



Figure 3 shows the evolution of chaotic small perturbations at the separation
boundary of two substances of varying density, where non-steady energy release is defined
in each substance.

Figure 4 depicts the results of calculating a problem on the convergence of a
spherical shell. Initially, the disturbed shock wave front moves out to the external
boundary, and a non-steady energy release s defined in the shell. Here at different time
intervals, all types of hydrodynamic instability exist. The figure illustrates the form of the

shell and the gas at the last point in the calculation.

Impulse instability

In 1989 an international conference ook place in Pleasanton (USA). The
confercnce was devoted to the research on the turbulent intermixing of liquefiable
mediums. The initiator and chairman of the meeting was Dr. B. Rupert from Lawrence
National Laboratory. Before the conference he presented conference participants with two
test problems to verity and compare numerical methods. A significant portion of the
reports given [at the conference] were devoted to the calculations of these problems. In the
problems one had to study the development of perturbations at the boundary of gases of
varying densities that were acted upon by the impulse acceleration elicited by a stationary
shock wave (SSW). The shock wave enters the contact boundary from the heavy gas into
the light gas and vice versa. It was also necessary to examine the interaction in the zone of
mutual penetration of gas caused by the shock waves reflecting off the boundaries. The
initial perturbations in the contact boundary were defined in the form of one mode and the
superposition of five modes.

Figure 5.8 represents the results of the calculation of these problems, as generated
by MAX. A change in the form of the contact boundary and perturbation amplitude
overtime is shown, as is a comparison of the resulis obtained by Dr, B, Rupert.

Figure 9 depicts the results of calculating the $.G. Zaitsev experiment [2]. The
development of unimodal perturbations on the contact boundary of gases of various
densities were studied, as they are effected by a "strong” shock wave (MAX = 3.5). Also
depicted are the form of the contact boundary and the isometric line of the velocity vector at
one time interval.
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Experimental investigations of gravitational turbulence for
gases with density decreases n = 13.5 produced the partial density
profile of Kr in the MZ.

The experimental and calculated density profiles of Kr
cbtained using the CMM program with different MDC are plotted in
Fig. 5.11. The experimental profile satisfactorily agrees with
that calculated. The effect of the type of MDC of the components
on the accuracy of the Kr profile description can also be seen. An
isothermal calculation at the left boundary gives a more accurate
description; an isentropic one is mere accurate near the right
boundary.

The experimental curve near the CB lies between the limiting
cases. This means that the heat exchange between the components in
the MZ must be calculated.

Thus, the results suggest that studies on mathematical
modelling of turbulent flows of multicomponent media within the
framework of the CMM method are promising.
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Annotation

This report describes a numerical methed and 1ts capabihities as it 15 implemented n
the MAX software package. The results from the calculations of a number of problems on
vortex flows with large deformations in the separation boundaries of substances are

presented as an illustration.

1. Physical processes and mathematical models.

The MAX software package is designed to calculate the following physical
processes:
- adiabatic flows;
-- processes of the development and motion of detonation waves in explosive substances
(with kinetic burning propagation and without the allocation of a zone for chemical
reactions);
-- viscous fluid flows (the **TN equation is integrated)
-- viscous plastic flows;
-- phase transitions (melting, evaporation, polymorphism; modeling using equations of
state);
-- motion of energy release unstable in terms of time and varied in terms of space.

2. Numerical method and its capabilities.

Depending on a prior informaton about the processes taking place in the problems,
the system being calculated represents a set of calculated domains. The boundaries of these
domains can be contact boundaries (i.e. domains in contact with other domains), external
boundaries {free boundaries, rigid walls, boundaries with a prescribed pressure or normal
velocity, Eulerian boundaries either with an outflow or influx of the substance} or
continuous Eulerian boundaries through which a substance overflows from one computed
domain into another,

TN Name iliegible in original Russian text



A variety of physical regions can be found within a computed domain. There are
two ways to describe the contact ruptures: regular and trregular. First let us examine the
numerical method with a regular description of the surfaces of the substance interface in the

substances where they are mesh lines.

2.1 Regular method
A sort of modification of the arbitrary Lagrangian-Eulerian method proposed by S. Zhert,
E. Amsdon and J. Cook [1] is used for calculations within the internal points of the
computed domains. The algorithm currently being impiemented in MAX differs
significantly from the one used originaily, although the basic design principles and ideas of
the method have been preserved [ 1. They consist of the following:
1. Difference equations derived by approximation of the quadrangular mesh of the laws of
conservations, i.e. the diagram is a divergent relative to mass, impulse and full energy.
2. Integration is divided into two stages. Lagrangian equations are solved at the first stage,
while the second stage takes into account the convective flows between the cells, in the
event that the law of motion of the upper mesh does aot correspond to the Lagrangian law.
3. The original implicit iteration diagram is used at the Lagrangian stage. The explicit phase
is a nuil iteration, At every iteration the diagram is also implicit, and the iteration process
comes together at any time increment .

The modified method has a number of new and important features:

-- Spherical symmetry is preserved at the Lagrangian and Eulerian stages, and the equations
thus remain divergent;

-~ The difference diagram is more monotonous, and in such problems, like the calculation
on the Fulerian mesh of the disintegration of gaps with large drops in density and
dispersion into a vacuum, it is more exact.

Each computed domain uses its own arbitrary quadrangular mesh. The contact
boundaries between the computed domains are calculated without taking slipping into
account. For boundaries of adjacent computed domains that are in contact, a
computational algorithm for surface slipping has been developed and implemented . The
algonthm fulfills the condition for preserving symmetry.

2.2 Irregular method of calculating contact boundaries
The irregular method is used to calculate significant deformations in the boundaries
of substance separation. In this method, particle markers, located directly along the line
separating the substances, are used to describe the contact rupture, The markers, whose
coordinates are calculated at every increment, determine the location of the contact surface.
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In the irregular method the boundary calculations may arbitrarily intersect the Eulerian
mesh, thereby forming mixed cells containing several different substances. These cells
also introduce an irregularity into the numerical algorithm both at the Lagrangian and
Eulerian stages. Various conditions for consistent deformation of the components are
employed to calculate the mixture. The conditions for thermodynamic equilibrium of
components and the continuity of the velocity vector along the contact boundary are the
conditions primarily used.

At the Lagrangian stage, the pecuhanty of the mixed celt calculation lies in
determining the pressure of the mixture, which i1s generalily found by using iterations,
Otherwise, the calculation of such cells essentially does not differ from the calculations of
homogeneous cells.

The pecutiarities introduced by irregular boundaries at the Eulerian stage
considerably complicate the algorithm for calculating convective flows during mesh
readjustment. At this stage, first the coordinates of the markers and their position in the
mesh are determined. Flows in the neighborhood of mixed cells are calculated by taking
into account the direction of the flow, the composition of the substance in the celi,
depending on the direction in which the markers are relocated along the Eulerian mesh, and
1n some instances, depending on the number of markers that have shifted from one cell to
another.

During calculation, the rarefaction or thickening of the markers on the separation
boundary is menitored. Such markers are eliminated and the addition of new ones is
prevented.

The transition to the irregular method of describing the contact boundaries takes
place, as a rule, at a certain point in the catculation when large deformations begin to occur
and a regular calculation becomes difficult.

Since the irregular method is rather expensive, the program envisages the
possibility of reconstructing and recording the flows at every few Lagrangian increments,
rather than at every single increment. A calculation of strong deformations of contact
surfaces without using markers at all, but using a concentration, is also conceivable.

By using a priori information about processes in convective problems, it is possible
to combine Lagrangian {explicit or implicit) and Eulerian calculations, and use the regular
or irregular method for describing the contact boundaries in various domains of a given
problem or in one in the same domain, but in different time intervals. This approach makes
it possible to calculate a wide class of flows while choosing the optimal path for obtaining
the necessary precision,



on the following concepts:

1) local component pressures are egqual in the MZ;

2) the overall pressure gradient causes different accelerations of
components with different densities;

3) the component interaction forces are proportional to the square
of the difference of their densities;

4) the linear dimension of heterogeneities in the M2 increases in
proporticn to the width of MZ;

5) the coefficient of resistivity in the component interaction
forces depends on the local decrease of component densities;

6) additional dissipation of energy owing to turbulence is
considered in terms of the dissipation of kinetic energy
through component force interaction.

A series of calculations was performed using the CMM program.
These correspond to experimental setups for mixing of uncompressed
liguids and gases [12, 13].

The goal of these calculations was to calibrate the model
parameters and to determine its capabilities for modelling flows
arising under these experimental conditions.

Let us turn to modelling the experiments of Kucherenko.

The development of R-T instability at the CB of liquids of
different densities can be diagrammed as follows:

The heavy ligquid with density py lies on the light liquid of
density p;, in a gravitaticonal field of acceleration g that is
directed from the heavy liquid to the light.

Such a physical situation is unstable. If perturbations cccur
at the surface separating the media, then they will increase with
time, the CB will be destroyed and a MZ will arise that will
develop on both sides of the initial position of the interface.

It follows from size considerations for a MZ width of Ly,
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It follows from size considerations for a MZ width of Iy,

that:
/

s ps
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(2.3)
where L, = gt?/2, n = pg/py, and Ay = const.
An analogous relationship is obtained for the depth of
penetration of the heavy ligquid into the light:
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Coefficients Ay fy,(n) with uncertainty o, , have been obtained in
previous experiments [12] for a series of density decreases n.
These data are presented in Table 5.1.

Table 5.1

| _ | 1
"o s 4 | 6| 10 |13.5] 20

0% - AL Ff. |94 | 13 18 [23.6 | 27.6]29.9

LI

e O, 0.65| 0.310.93{0.63 | 1.3 1.2

e,

Numerical modeling of the previous experiments {12] using the CMM
program was carried out with the following setup.

Two substances in a gravitational field of acceleraticn ¢ = -1
have the equation of state

(5.5

- ! o .
Nt 4P ;

Pt Y

o

T
El.i N

|\}

The heavy substance lies on the light one, as diagrammed in Fig.
5.2.
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Initially, the system is in equilibrium and the component
velocities are uy = u; = 0. The initial distributions of the

specific internal energies are:

é;;feﬂ);EE}A + _—%i— [ﬁ?—gﬁ?/ .

7L Y |
- | wa : (5.6)
Erl) '-_éj"’. - }% _._,-:ro/)l | 6

and determine the pressure profiles in the heavy and light layers
corresponding to the pressure distribution in an uncompressed
liquid placed in a gravitational field of acceleration g.

The temperatures of the substances are identical at the CB.

The criterion for the loss of stability in this problem occurs
at the initial time peoint. According to the CMM method, an
elementary MZ is formed at t = 0. 1Its size is equal to twice the
maximal range of the difference grids in the subkstances adjoining
the CB.

The parameter f(n) in eq. (5.2) for each decrease of densities
was selected to describe satisfactorily the experimental data for
the movement of the penetration front of the heavy compecnent into
the light. The initial data and the selected parameters f(n) for
decreases n = 3, 4 and 13.5 are listed in Table 5.2.
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Table 5.2

[ ] P L sl | Fer | F0
3 | 0.8 | 2.04 | 1250 450 | 2.7 |
4 1 0.68 | 2272 | I800 | 450 | 28
135 I ""fﬁLg '; €575 |4 |

The corresponding calculated and experimental dependences of the
penetration depths Iy (x) are plotted in Figs. 5.3-5.5. The
experimental data are satisfactorily described at the selected
f£{n). The following function was constructed from these values

using the method of indefinite coefficients

4
L
Ly
Ry
Y
2
t}

This function 1s plotted in Fig. 5.6. Calculations were
performed for density decreases n = 6, 10 and 20 in order to check
the generality of the constructed functien. The values f(n) were
chosen according to the constructed function (5.7).

The values f(n) calculated using eq. (5.7) and selected f(n)
that ensure the best agreement with the experiment for decreases n

= 6, 10 and 20 are listed in Table 5.3.

Tabkle 5.3
‘- o A - o sl L i
e A ¥ | i A i. — ; 5&‘(’_C_1'e.d i b){ {f‘f‘m wlo.
6 0.63 | 4.08 | 2700 | 450 24.3 23
10 T.35 | 13.5 | 4500 | 450 21.28 20.3
20 i 0.63 | 13.5 | 9000 | 450 18 18,7
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The values selected and obtained from the formula differ by
less than 4.7%.

The constructed function f(n) was used in calculations
corresponding to the experimental setup for gas mixing [(13].

Previous experiments (13] on the gravitational instability at
the interface of inert gases of different density under the
influence of a non-steady-state SW were carried out in an
electromagnetic shock tube (EMST). The shock tube and the
placement of the dividers are diagramed in Fig. 5.7. The first
section was filled with He. The second and third sections were
filled with different monatomic gases (He, Kr, Xe, Ar). The gas in
the second secticn was heavier than in the third. The physical
description of the flow in the EMST is as follows. A SW formed in
the discharge section of the EMST passes successively CBl and CB2.
At the moment the SW exits CB2, a sequential explosive discharge
ocCccurs. This forms a loading wave advancing in the direction
opposite to the origin of the shock tube. The C€B2 initially
experiences a shock acceleration in the positive direction and
then, entering the active zone of the loading wave, experiences an
acceleration in the negative direction. This leads to an unstable
state of the CB and mixing.

AT He. Ky He ne

1 - |

B t h i

o) Xy Xz Xy

Figure 5.7

For a density decrease n = 13.5, the mathematical statement of
the problem corresponding to the experimental setup has the
following form:

[Equation missing?)

The pressure at the left boundary p(t) is given as a function of
time t, selected from the coincidence condition of the calculated
and experimental trajectory of the first SW in He. The right

boundary is a rigid wall. The gases are described by the state
equation
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The coordinates of the CB, the initial data, and the parameters of

the state equations of the gases are given in Table 5.4.

Table 5.4
Coordinates 7 [§ Loe
{dm)
X:= 10.87 |- 1.63 . 1.6°107% | 0.524
Xe = 13,12 1.689 3.364.1079 - 0.504
¥y = 20 1.83 T.6.707% | 0.o84

As noted earlier, the component force interaction, i.e., the
parameter f(n), 1is an important element of the examined
mathematical model. The scale of the influence of this parameter
is demonstrated in Fig. 5.8, where the z—-t diagrams of the
component fronts are plotted, and in Fig. 5.9, where the effect of
£(n) on the behavior of Ly,(t) is shown.

Experiments on gas mixing were numerically modeled both
assuming no heat transfer and assuming 1local temperature
equilibration of components. Tt was found that the decrease in
densities in the mixture zone depend on the choice of conditions of
mutual deformation with temperature. In effect, a decrease n =
13.5 in the case of an isentrope changed to n = 19.15 if the
calculaticen was carried out assuming local temperature
equilibration. The dependence of the decrease on the heat-exchange
conditions between components means that the function f(n) must be
used in the general case of calculating the component force
interaction. This function depends on the local density decrease
n. A function constructed through modeling of experiments on the
mixing of uncompressed liquids was used as F(n) [12].

The dependence of the MZ width on time constructed for an
isothermal decrease n = 13,5 is plotted in Fig. 5.10. Satisfactory
agreement with the experimental curve is seen.

30



08 —

—en
wt

o4

o
‘u
LY |
L, |

0567

e

Fig. 4.8.
Solution for a piston moving out of a mixture of two
Partial component separation in a rarefacticn wave.
~ precise solution

X X - numerical sclution. t= 0_.71881

i

sclids.



angd heterogenecus element.

-precise solution

£

Lo,
4 3 v
|
: *
1.8.
i *
[ ,
1.64
oo %
1.4 1 . i
Ly ?
I.2] T
+
. S
1.0
%
X
008"
x
g ‘ |
ry Hso o Ually Ly ;
- n..-n--—---l-'r*?‘-]—r»*r—-r——- ]
O-‘() Sl g0 X " i
T ¥ |
> ¥ ’
X i
. » {
C.ad o f
| i
{ |
: r N v S J
) i
C.o2 t i * !
; " i
o~ :
0.0, , | , N
-5 2 -2 0 2 .
Fig. 4.9.
Explosion d&issipation at the boundary of a homogeneous

SW—SW configuration.

X -numerical solution.



2.2

2.0

I.8

1.6

I.4

P
-

7
O

Explosicon dissipation at

hetercgeneous elements.

J' Yy !
x yfyv - AT f
r.'(' W NI ) i
Lig x
o+ ]
by i
! |
X
e 3
]
+ ..
w J
|
!
|
p !
X !
!
b
: e Ll
- [
| ," . s
II ¥ 'J( d ! - P
| v ’.l “;._i_a' y l -
U T P S 1 1 L —'.‘ll._."_;-;-v'\—'- ST S W
-4 -2 0 p 4 =
Fig. 4.10.

the boundary of homogeneous and
RW—SW configuration.

precise solutions * * % humerical solution.




H
woand .

-

Fn . [

Fig. 4.1%.

Explosion dissipation at the boundary of homogeneocus
heterogeneous elements. RW-RW configuration.

BYO8 BP - EP. precise solution

X X % numerical solution.

ey
T

and



0.00 7%

i

-0.05

T

-0.10 4 'Y'

OUI0 T

-0.20 4.-

-0.20 -

1

~0.30 ¢+
~0.35 1 .Ms

-0.40 1 6

i

~0.49 1

-0.501

T S
"\-'i\}t) -4

b
;
r1
‘n

|
. -
N8
|

- —
F
o

Lo B £ 0

Fig. 4.12.
Explesion dissjpation at the boundary of homogensous and
heterogeneous elements. SW-RW configuration.

precise solution® X * numerical solution.



gases without component interaction forces:
-SW (Fig. 4.3),
-RW with complete separation {(Fig. 4.4),
-5W with partial separation (Fig. 4.5).
3. Solution for piston movement in a nixture of two solids without
component interaction forces:
-S5W (Fig. 4.6),
-RW with complete separation (Fig. 4.7),
-5W with partial separation (Fig. 4.8).
4. Solution for arbitrary explosicn dissipation at a boundary

separating an isothermal gas and a mixture of two other

isothermal gases:

1) SW-SW configuration (Fig. 4.9)

2} RW=SW configuration (Fig. 4.10)
4.11)

4) SW-RW configquration (Fig. 4.12)

3} RW-RW configuration (Fig.

A comparison of precise and numerical solutions without component
force interaction demconstrates the capacities and accuracy of the

method with the maximal effects of component velocity inequalities
in dynamic processes.

5. Mathematical modelling of the development of
a mixing zone (MZ) of substances with
Rayleigh—Taylor (R-T) instability

If the component pressures are equal, the relative movement in
the mixture arises through the different accelerations acquired by
the components with a different density in the overall pressure
gradient field.

The investigation of the stability of uni-dimensicnal
hydrodynamic flow enables the required instability conditicn of the
CB to be written as

PP OP
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where JP/3dz and dp/dz are the pressure and density gradients
through the CB.

During random generation of a mixture at the CB, the action of
forces that cause a relative movement of components destroys the CB
and forms an elementary MZ that is a two-component mixture. After
generation, the elementary MZ develops according to features of the
mathematical model [egs. (1.5-1.13)].

In the CMM method, an elementary MZ forms in the CB region
after achieving criterion (5.1). Thus, the following are defined:

a) positions of the compenent mutual penetration fronts;

k) wvolume concentrations of components;

¢} thermodynamic parameters corresponding to accepted MDC of
components;

d) characteristic size of heterogeneities.

Information on the individual thermodynamic parameters of the
substances on both sides of the CB and that on perturbations at the
CB are used as the starting informatien for obtaining the numerical
characteristics of the mixture.

The volume concentration of the right substance in the
elementary MZ at the moment it is formed is a parameter of the
mathematical model, af.

The force and energy of component interaction have a
determining effect on the integral characteristics of the numerical
solutions such as the movements of the component interpenetration
fronts, the component concentration profiles in the MZ, etc.

The parameter t, jp eq. (1.9) is represented as

< oo [
- = CL“‘:L'}J) ru

L
/
_"f;i;;/)'/z'{’ '{("/
L ’
- Jf7
where Ly; 1s the width of the MZ and f(n}) is a dimensionless

function depending on the decrease of densities, n = py/p.. Thus,
the mathematical model from the MM method that describes the

Fu = (5.2)
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3) A RW—-RW configuration. In this instance, a typical RW
expands in a homogeneocus substance; a combination of two RW into
the mixture (see Fig. 2.24).

4) A SW-RW configuration. A SW occurs in a homogeneous
substance during this type of dissipation; a combination of two RW
in a mixture (see Fig. 2.25).

The velocity of the CB 1is determined by the pressure
egqualization on both sides of it. Determining the type of
explosion dissipation by solving the ceorresponding problem with a
one-dimensional description for the mixture is an important element
of the algorithm for solving the problem of the dissipation of an
arbitrary explosion. In the examined instances for the chosen
parameters, assuming a different type of explosion dissipation
(even for a two-velocity description of the mixture) always led to
an incompatible system of egquations.

In conclusion, we note the precise solution of the piston
problem for a mixture of iscthermal gas with uncompressible
particles that was previously obtained [10].

Studies on precise solutions of interesting applied problems
are presently continuing. It seems to us that efforts here must
increase and that they will be generously repaid through a deepened
understanding of the physical nature of complicated processes

gccurring in systems with nonequilibrated mixtures of substances.

14



3. Numerical method

The layers comprising the multilayered system will be called

elements.
Two types of elements are permitted: hetercogeneous and
homogenecus.

A homogeneous element is a layer of homogeneous substance
without internal boundaries.
In principle, the following types of heterogeneous elements

are possible:

J a} -left and right component

] boundaries coincide;

7 b} ~-two substances overlap in

—_
e

a certain region, representing

f 7 t a mixture;

¢) -only the right boundaries

coincide;

p—

ki,

d) -a CB occurs between two

I %

v substances;

e} -an evacuated gap occurs

[

- v < . between two substances.

The difference method for calculating a homogeneous element
consists of the following [11]

e o ;o I ’ -
Ly e =T flxens) f‘fr-uﬂ/—«-,:/ (3.7)

' /1 P
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where
(3.2)
2%”'£* ?rm e :‘!'3“ \
s 1AZX*25" -
.( = HW'F—*-' ?_" 3 (3_“:\1
Sleeos] = P ET]
where Mx’-‘a;‘ = Zﬂ" fgaqj- '[Z{/zuy/ /2",4:/ -/)
7z, 4
4y = 7 Z}-:.;?
! ,":;-"" N .'!)h..;

The cells containing the SW and those containing the RW differ
in the numerical method.
If Au = uj,; - Uy 2 0, then the cell is considered to contain
0 . Hrd P
a RW. In this instance, fﬁ

and are obtained by
integrating isentropic eguations with the necessary precision:

.Ffﬂ‘a’- _ggéj-

al LAl o
¢ el

459

If Au = up,y - U < 0, then a SW is considered to lie in the

(3.4

. L d . .
interval. In this 1nstance,;aﬁ;154yas determined by numerically
solving a system of equations resuitihg from relationships on the

surface of a strong explosion:
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Then, /- 7Y is found using the formula
S
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The difference method for calculating a heterogeneous element
consists of the fellowing.

Numerical integration of a system of equations for
mathematical models of multicomponent and heterogeneous media uses
the following breakdown of physical processes (2].

STAGE 1. The motion and deformation of a component is
calculated taking intoc account the force interaction from another
component in Lagrangian coordinates. This produces individual
(inconsistent with mutual deformation) component parameters.

STAGE 2. The spatial correspondence of components is
determined in Euler cocrdinates. Their individual thermodynamic
states are then converted locally into a state satisfying the MDC,

For each component, an individual Lagrangian coordinate system
is intreoduced that is related to the velocity field of this
component,

Each component is viewed as a spatial region. A two-component
mixture is considered a combination of such regions superimposed on
each other.

A unique difference grid is constructed for each component.

17



The values of the other component in a mixture are defined on the
grid of each mixture component, in addition to the wvalues of that
component. The values are obtained by interpolating the values of
the second component determined from its own grid onto the grid of
the other conponent.

The difference grid of the component can consist of three
types of ranges:

Jl.ﬁ j component,
pure range,

r
1) I
1
i
—— i — e et ——— ! — —
_L-{.,. :{j’l'lll"
' 1 component
. . ’. ¢ J component,
2) mixed range, — ISR G -
|
i
1 5 I
y
', Teres i component
Jj component,
3) —_—
T T
L Leies 1 component

heterogeneous range,

The difference method for calculating the heterogeneous range
generalizes the previous schematic [11] for a two-component medium.
The difference system for calculating the component velocities has
the following form:

! ” < A ”"_ "
x'i'é,i‘ :Z’Zf’;—zl%ﬂ. _Zﬂ/_é, . l’fq}-l.‘{ "_‘_,f Z/,(‘_. v/‘j/

a2y /,e’&,q«,z,e &)/ WA R
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[There is some printing below these equations that is too

ﬁ?;{Q 208 T

faint to read)

New coordinates for nodes and dissipation of kinetic energy in
steps of t are calculated after determining the velocities:

—_ i .t ' ;f [y A

/raJ Med HMrd 12 foove
s 6/,_ (s, —zz;,-/ 7 (8.70)
After this, individual thermodynamic component parameters are

calculated. Thus, it is assumed

s T .f ' ;2;.' )
o, Al Ly P,
oA g 4 (3.71),

i.e., only force interaction of components is considered. Within
its own grid, each compcnent at this stage is deformed as if the
other component were not present.

The system for calculating the individual thermodynamic
parameters is the same as that for a homogenecus element (different
systems of eguations are solved for Au; = ik%kf;jj _ é¢£?+5
< 0 and Au; 2 0).

The second step of the calculation is carried ocut after this.
It consists essentially of determining the parameters of the
mixture and components that satisfy their MDC using the individual
component parameters at a given point.

In order to avoid inaccuracies in the interpolation, the MDC
are calculated for each component.

After completing the second step, all thermedynamic parameters
acquire new values:

20



This finishes the calculatiocon cycle.
Averaging is first carried out for mixed ranges. Then, the

algorithm for the heterogeneous range 1is used.

Step limitations
An investigation of the stability of the difference schemata
leads to the following limitations on the time step t (Curant's
condition):
a) for a homogeneocus element
Ve ¥

7= 15
L +4//0za5{/zi;ﬁéz/ (3.22)

where m, 1is the planar mass of the range and a, is the mass

velocity of sound,

7 e y 4 e <D
. éjl A;’/‘l’ ;_{D

A1ty = Lpep ~ Mu /'

b} for a heterogeneocus element

7o A Life 7 4G
O -f:/ﬁ (;._J\;’.
where

I4
a1 . ) ] .
s I L :
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h, is the spatial step in the k interval of the i component, ¢ is
the velocity of sound in the k interval of the i component,
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2
{the extent of force interaction of components is taken as R; =
K(u; - u;), with the index i, determining that hy, Gp, L, Uy, and
C, belong to the 1 component, omitted).

Numerical calculations indicate that ' = 4 in eq. (3.13) is
sufficient to ensure that the numerical estimation is stable for SW
of arbitrary intensity.

The accuracy and the stability criteria are considered in
determining t. There are limitations con the deformation range and
limitations on the change of volume concentration of a component in
the range. There are also limitations requiring that the mixture
boundary after cone time step should traverse less than one range of

a component entering the heterogeneous mixture or exiting it.

4. Numerical solutions by the CMM method
of certain mechanics problems of

two-velocity hetercgeneous media with precise solutions

The CMM program executing the CMM method is written in FORTRAN
for an ES (1066) computer. The accuracy and capacities of the
method are demonstrated below in the figures, where precise and
numerical solutions of the following problems already known to you
are presented.

1. Solution for piston movement in a mixture of twoe isothermal
gases without component interacticen forces:

-SW (Fig. 4.1),

-RW (Fig. 4.2).

2. Soluticn for piston movement in a mixture of two polytropic

22
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or the limiting velocity for dispersion into the void (see Fig.
2.18).

2) At a certain point {*, the velocity of the light component
reaches that of the piston whereas the mass concentration of the
heavy component and the pressure still have not become zero. In
this instance, the solution consists of two elements. These are a
RW solution and two strong explosions (see Fig. 2.19).

3) At a certain point {*, the nixture pressure becomes equal
to =zero. This means that the material is destroyed and the
component velocities reach the limiting values.

In the region [{,, ("], the solution can be different,
depending on the piston velocity. A situation analogous to that
depicted in Fig. 2.20 arises at significant wveloccities u,. If
| ot < |yl < lu™, then a SW moving away from the piston

LE S 4

arises (see Fig. 2.21). The point { is determined from the mass-

conservation condition in the explosion
’ / >y an 'J
, v =
.':D-:zf //:L{/? '.D/ - f‘(-‘_{ /"”“If * - .-D/ y; I/Z; 'Ze/
o

The calculation of the CB between homogeneous substances and
mixtures 1is a serious methodical problem during construction of
numerical algorithms for soclving the problem of the movement of
multilayvered systems with substance mixtures.

In order to understand the specific principles associated with
this problem, the problem of the dissipation of an arbitrary
explosion at the boundary of an iscthermal gas and a mixture of two
other isothermal gases was solved [9].

Depending on the parameters of the gases, four types of
dissipation of the arbitrary explosion are possible.

1) A SW-SW configuration. 1In this instance, a SW travels in
a homogeneous gas whereas two strong explosions are disseminated at
different velocities intc the mixture. (see Fig. 2.22}.

2) A RW—SW configuration. A RW occurs in a homogeneous gas
during this type of explosion dissipation. A combinaticon of two
strong explosicens moves through a mixture (see Fig. 2.23).
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The force R; has the nature of a viscous friction owing to the
difference in the component velocities. The variables tY,, €&,
and tﬂj are the relaxation times of the velocity, pressure, and
temperature, respectively.

The first term in the right part of eq. (1.10) is the power of
the interaction forces on movement related to the velocity fielqd of
the I component. The existence of interaction forces leads to the
dissipation of the kinetic energy of the heterogeneocus medium per
unit time by (u; - u;)R;. The dissipated kinetic enerqgy completely
converts to heat. The distribution of this heat across the
components is requlated by the coefficient b;.

The velocities and temperatures of the components continue to
relax for certain finite times. 1In a number of instances, it can
happen that tﬁj is much less or, conversely, much greater than
other characteristic times of the hydrodynamic flow to be
calculated. In the first instance, a cne-velocity model of the

heterogeneous medium should be used; in the second, pulse exchange

due to force interaction of components is not considered. The
first possibility occurs at rather small tY 40 the second, at

rather large t%;. The actual type of tY; function does not need
to be known in these instances.

Analogously, tﬁj can be much less or much greater than the
characteristic times of the hydrodynamic flow to be calculated.

In the first instance, the 1local temperatures of the
components should be assumed to be equal; in the second, heat
exchange between components is not considered. Both these models
are also centained as limits in the equation given above., The
first occurs at rather small t7;
The correct type of tT; function need not be known in these
instances.

the second, at rather large tT;,.

Expressions for tY; and tﬂj in terms of macroscopic parameters
of the heterogeneous medium and components should be constructed on
the basis of an analysis of the physical properties of the actual
substance mixture involved in the actual physical process. This is
a rather complicated problem.



The mutual deformation conditicns (MDC) of the components,
i.e., the conditions for determining the volume concentraticns of
components in a unit volume of substance mixture during its
deformation, must be found in order to complete the mathematical
model of a heterogenecus medium.

In the general case, all types of inequality appear in the
mutual movement of components. Velocity and temperature
inequalities and the corresponding relaxation processes are
considered in the mathematical model in terms of the right sides of
the equations for R; and ¥;.

The relaxation of the component pressures on a microscopic
level has a wave hydreodynamic nature and occurs during a finite
time determined by the velocities of sound and the particle
diameters.

In é number of practical scientific problems, the pressure-
relaxation time turns out to be much less than the relaxation times
of the velocity, temperature and other characteristic times of the
flow to be examined.

In these instances, the local component pressures can be
assumed to be equal

P, = P, {1.11)

In the CMM method, this limiting instance is used to describe
the component MDC with respect to pressure.

The condition (1.11) occurs in a certain thermodynamic precess
that results in the individual thermodynamic states of the
components changing to states that satisfy this condition.

The nature of this thermodynamic process is determined by the
extent of heat exchange between the components and the accepted
physical model of the actual relaxation process.

The basic types of MDC of components in the CMM method are:

1) Local pressures and temperatures of components are equal.

The thermodynamic parameters of the components are obtained
from known densities, specific internal energies of the mixture,
and mass concentrations of components by solving the following

system of algebraic equations
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2) Pressures egualize without heat exchange between

components.

The pressures equalize along component isentropes.

AN, Js
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d£¢'~?€§~df; -0

P fou i £ 2 ) (1.13)
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3) Pressures egualize through heat exchange between
components due to their temperature difference.

The algorithm for this type of MDC is as follows.

Initially, the component pressures are equalized aleng their
isentropes without considering heat exchange ([the system of egs.
(1.13) is solved].

Then, the resulting thermodynamic parameters are used to
calculate the increase (decrease) of the component internal
energies due to heat exchange in the examined time interval.

Next, the components are converted from these new individual

8



states to the final states (movement along the isentropes), for

which the system of egs. (1.13) is again solved.

2. Precise solutions of certain mechanics problems

for two-velocity multicomponent and hetercgeneous media

Let us discuss analytical and precise solutions obtained by us
for a characteristic class of problems, the gqualitative features of
which had a significant effect on our ccncepts of the physics of SW
processes in substance mixtures and the method of constructing the
numerical method. The precise soluticons have intrinsic value since
they are ideal tests for monitoring the accuracy of the numerical
methods for solving the most common systems of eguations for
nathematical models of multicomponent and heterogeneous media.

An analytical solution for piston movement has been obtained
for a multicompeonent mixture of two isothermal gases in the one-
dimensional case without component interaction forces (3]. It was
demonstrated that the soluticn in variables of p., and u; for the
rarefaction wave (RW)} 1is a combination of two rarefaction waves
that expand independently, each for its own component (see Fig.
2.1).

The RW contains both a zone where the mixture is substantially
depleted of the light ccomponent and a zone where the nixture is
substantially enriched in it. The components of isothermal gases
are not completely separated in the RW. For the instance where the
piston plunges inte the mixture, the solution is obtained as two
strong explosions that expand independently for each component.
After the first strong explesion, the mixture is substantially
enriched in the light component; after the second, in the heavy
cene. The strong expleosions propagate with different velocities and
diverge with time in space (see Fig., 2.2).

This same problem has been examined [4] taking into account
the "assocociated-mass" effect. The qualitative features of the
solution for a SW with pulse exchange between components that is

proporticonal to the difference of their wvelocities is as follows.

9
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A strong explosion with a substantial jump in the parameters of the
light component migrates through the mixture in the initial state.
The heavy compcnent reacts to a lesser extent to this explosion
(see Fig. 2.3). A region of constant flow substantially enriched
in the light component follows this explosion. This region expands
up to the second strong expleosion in which the parameters of the
heavy component substantially change. & region of constant flow
near the piston follows the second explosion. Here, the mixture is
substantially enriched in the heavy component. The velccities of
the explcsions are different. It is characteristic of the first
strong explosion that the rate of the light component behind its
front is greater than that of the piston. For the second strong
explosion, the velocity of the light component characteristically
drops although the pressure in the medium increases.

[Fig. 2.3]

Three situations can arise for the RW:

1) At a certain peint {”, the mass concentration of the heavy
component reverts to zero whereas the velocity of the 1light
component has still not reached the piston velocity. The
components can be completely separated in the EW (see Fig. 2.4).

2) At a certain point, the velocity of the light component
reaches that of the piston whereas the mass concentration of the
heavy component has still not reverted to zero. In this instance,
the scluticen is a combination of the RW previocusly described and
the sum of two strong explosions. The intersection of these
solutions is unambiquously determined (see Fig. 2.5).

3) At a certain point, the velcocities of the light and heavy
components become equal and the piston velocity is still not
reached (see Fig. 2. 6).

As the interaction forces approach infinity, all seclutions for
both the SW and the RW approach a form corresponding to a one-
velocity mixture with the corresponding averaged parameters.

The structure of the SW front in a mixture of two isothermal
gases with a strong component interaction proportional to the

difference of their velocities has been investigated [5].
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Depending on the relationship of the problem parameters, four
types of SW front structure are possible:

1) a strong explesion in the light compenent and a region ef
continucus flow in front of it (see Fig. 2.7}

2) a strong explosion in the heavy component and a region of
continucus flow in front of it (see Fig. 2.8);

3) two strong explosions in the components and a region of
continuous flow between them (see. Fig. 2.9);

4) a purely continuous flow (see Fig. 2.10).

A precise solution of the piston problem for a mixture of two
polytropic gases without component interaction forces has been
obtained [6].

In this instance, in contrast with the mixture of iscothermal
gases, the components affect each other even without strongly
interacting.

The gualitative picture of flow in the SW (see Fig. 2.11) is
similar to the case of isothermal gases with pulse exchange between
components owing to their different velocities.

Two situations can arise for RW.

1) At a certain point {", the mass concentration of the heavy
component reverts t¢ zero whereas the velocity of the 1light
component has still not reached the piston wvelocity. In this
instance, the components can be completely separated in the RW (see
Fig. 2.12).

2) At a certain point {*, the velocity of the light component
reaches the piston velocity whereas the mass concentration of the
heavy compcnent has still not reverted to zero. This should
produce a SW moving away from the piston. Thus, the solution in
this instance will contain elements of a solution that is a RW in
a heterogeneous medium and a solution that is a sum of twe strong
explosions. The intersecticn point {, of these solutions is
determined from the condition that the SW parameters, taken at this
point as the initial state of the heterogenecus medium, ensure an

expansion velecity of the first strong explesion of (. (see Fig.
2.13)
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The problem of an advancing piston with complete separation in
the RW for a heterogeneous mixture of two polytropic gases has been
solved [7]. The solutions of the models of a multicomponent and
heterogenecus medium have been demonstrated to be qualitatively and
gquantitatively similar to this class of problem over a wide range
of contrelling parameters (see Figs. 2.14 and 2.15)

The problem of disseminaticn of RW and SW in a mixture of twe
condensed substances taking into account the associated-mass effect
has been solved (8]. The equation of state of the components was

used in the form

The extent of a strong effect on the i component from the j was

taken as

..
7. A S, TR
/LJ/‘ = _'i.._./__l;;} &/_ £ E_/{’f ’

. ~r a’' & //

v L

The flow arising during SW propagation has the following
gualitative nature.

Strong explosions move through the mixture in the initial
state. The parameters of both components jump in each of these.
The explosions move at different velocities and diverge with time
in space. It is characteristic of the first strong explosion that
the velocity of the light component behind its front is greater
than the piston velocity. The velocity of the light component
decreases for the second strong explosion although the pressure in
the mixture increases in this explosion (see Fig. 2.16}.

Cne of three situaticns is possible for RW dissemination in a
mixture of two sclids.

1) At a certain point {", the mass concentration of the heavy
component reverts to 2zero whereas the velocity of the 1light
component has still not reached that of the piston and the pressure
of the mixture is not at the null value. Thus, the velocity of the
light component reaches either the piston velocity (see Fig. 2.17)
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