Briefing on DPRK Visit – Aug. 23 – 27, 2005 John Lewis and Sig Hecker CISAC/Stanford University

> Briefing for Dr. Condoleezza Rice Secretary of State September 8, 2005

\cdot 5 MWe reactor

- Operated for ~ 26 mo., unloaded, reloaded operating well at full power (can run indefinitely).
- Reprocessing
 - Throughput improved by x1.3; reprocessing of 8000 fuel rods almost complete.
 - Will have extracted 10 to 12 kg plutonium (Pu).
- $\boldsymbol{\cdot}$ Reactor construction
 - Redesign of 50 MWe complete. Construction workers preparing to restart construction.
 - 200 MWe still under study. Cost more to complete than to start over.
- Radioisotopes
 - Run Soviet-supplied IRT research reactor occasionally to produce I-131 for thyroid cancer therapy. Limited by not having received fresh fuel since Soviet times.

DPRK is moving full-speed ahead with nuclear weapons program

Current status - DPRK nuclear program

• Plutonium

- < 1994 (IRT & 5 MWe)
- 2003 (5 MWe)
- 2005 (5 MWe)
- > 2005 MWe capacity
- Future 5 + 50 MWe
- Nuclear weapons

~ 8.6 kg ~ 25 kg ~10-12 kg ~ 60 kg/yr

(1 + weapons worth) (4-6 weapons) (~ 2 weapons) ~ 5-6 kg/yr 1 weapon/yr ~ 10 weapons/yr

- We know very little. Given demonstrated technical capabilities, we must assume they have produced at least a few simple, primitive nuclear devices.
- No information on whether or not devices are missile capable.

Uranium enrichment

- Jan. 2004: Dir. Ri told Lewis of centrifuge experiments in 1980s, which were terminated in favor of plutonium program.
- Aug. 2005: Dir. Ri (in MFA presence) denied the statement.
- Strong evidence points to some level of uranium enrichment.

Plutonium itself represents a major threat, regardless of sophistication and number of weapons

Discussions of nuclear weapons risks of two reactor fuel cycles S.S. Hecker and Yongbyon Dir. Ri Hong Sop (August 25, 2005)

	Graphite-moderated <u>reactor (Magnox)</u>	Light-water <u>reactor (LWR)</u>
Front end	- No enrichment (but U technology to UF ₄).	- 3-4% enriched fuel. - Enrichment poses greatest risk.
Reactor	 Not very efficient for electricity Makes good weapons-grade Pu. Can be degraded by long burn-up (less weapons-usable). 	 Efficient for electricity. Poor WG Pu. Can be enhanced by short burn-up.
Back end	 Reprocessing is direct nuclear weapons threat. DPRK has adequate facilities. 	 Reprocessing represents some weapons threat. DPRK would need to modify reprocessing facility.
Technical risk reduction	- High burn-up/no reprocessing. - IAEA Additional Protocol. (possible export of spent fuel).	- Fuel leasing (no enrichment and return fuel). - IAEA Additional Protocol.

Both fuel cycles can lead to nuclear weapons, although some technical measures can be taken to reduce risk. Level of acceptable risk is political decision. **Discussions of technically preferred path to energy** Lewis delegation with VM Kim Gye Gwan and DG Li Gun (Aug. 24-26, 2005)

- Put off LWR decision; focus on near-term conventional energy solution.
- Implement immediate, massive enhancement of energy infrastructure, electrical grid, and conventional fuel supply.
- Upgrade all phases of energy sector*
- production
- transmission and distribution
- use

- Production
 - Coal infrastructure (mining electricity, spare parts, tools; transportation system)
 - Thermal power plants (rebuild, supply boilers, turbines, build multiple small units, etc.)
 - Alternative energy (maintain hydros, build new ones, wind, biomass, etc.)
 - Convert some units and build others for LPG (liquid petroleum gas)
- Transmission and distribution
 - Upgrade (power transmission and distribution lines, switching stations, frequency controls)
 - · Construct national grid to connect current, inadequate grid
 - Automated switching (replace current telephone and telex modes)
- Use
 - Rural energy rehabilitation (focus on agricultural and rural residential)
 - Upgrade, replace, maintain critical industrial infrastructure
 - Many generic upgrades (control & communications, modern manufacturing, tools, spare

DPRK reaction ranged from energy infrastructure upgrade is "good idea," to "don't tell us about our own country, we need LWR. No LWR, no deal."

* Based on Nautilus Institute study, Peter Hayes, July 2005

One possible option for resolution of nuclear crisis

- Right to peaceful nuclear energy. Don't exercise now, but keep window open.
 - Help DPRK with radioisotope program for medicine, agriculture and industry.
 - Keep Kumho LWR site in stand-by to show good faith for future LWR option.
- U.S. offers concrete steps toward normalization of relations with DPRK.
- Focus 5-party assistance on immediate, massive revitalization of energy infrastructure, electrical grid, and conventional fuel assistance.
- DPRK eliminates nuclear weapons, nuclear weapons program, nuclear materials, all graphite-moderated fuel-cycle facilities, <u>including</u> all existing uranium enrichment facilities and equipment.
- DPRK returns to NPT and abides by all IAEA regulations and monitoring (including the Additional Protocol) perhaps with additional measures.
- Five parties offer help for safe and secure remediation of Yongbyon nuclear site and rehabilitation of nuclear workforce.

Sequencing of steps and verification will be major challenges