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Executive Summary 

The goal of this report is to demonstrate how machine learning image classification tools may supplement 

traditional strategic trade controls to bolster nonproliferation efforts.  

The author of this report was able to create a successful proof of concept, demonstrating machine 

learning models’ ability to classify controlled dual-use goods from images publicly available online.The 

research team’s goal was to asses the potential utility of machine learning algorithms to classify relevant 

images as a supplementary tool for detecting potential violations of strategic trade controls. The 

algorithms discussed in this report are image classification models, or machine learning algorithms that 

autonomously classify images. 

The report details relevant items of interest and selection methodology, a dataset of relevant WMD-related 

dual-use equipment, and successful image classification model development and evaluation. It also 

considers the potential wider applicability of machine-assisted identification for nonproliferation efforts 

including field applications, such as an image dictionary of controlled goods, automating new image 

classification, and extracting images from additional online sources such as videos. 

Because of the criteria that decide which dual-use goods are subject to export controls, it is unlikely that full 

automation by means of machine learning image classification is currently possible. While image 

classification models can recognize objects, this research suggests that, often, the models cannot recognize 

context or item characteristics such as material and size. Thus, while machine learning image classification 

tools can improve the efficacy of strategic trade control implementation and respective nonproliferation 

efforts, the research presented here could imply that these tools and applications might not solve all the 

problems associated with controlling dual-use goods. 
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Introduction 

The goal of this report is to demonstrate how machine learning image classification tools may supplement 

traditional strategic trade controls to bolster nonproliferation efforts.  

Recent scientific and societal advancements have paved the way for what is colloquially referred to as the 

machine learning revolution. While the basic foundation for machine learning was established in the middle 

of the twentieth century, scientists and researchers have refined the algorithms that shape the field of 

machine learning over the past decade, leading to a drastic increase in the number of potential applications.1 

Machine learning algorithms make up a large percentage of the field of artificial intelligence (AI), and can 

be defined as “the process by which a computer system, trained on a given set of examples (or data), 

develops the ability to perform a task flexibly and autonomously.”2  

With this rise in potential applications comes increased global interest in machine-assisted technology and 

functions across a wide range of subject areas, including international security and defense sectors. 

Discussions considering the use of machine learning to further weapons of mass destruction (WMD) arms-

control and nonproliferation goals have developed in recent years. These discussions not only shape policy 

formulation and projections, but also begin to accelerate the pace of relevant nonproliferation data analysis 

to more effectively yield streamlined evidence of proliferation activities.  

Nonproliferation involves multiple efforts to combat the spread and/or growth of WMD and related 

technology that have the potential to threaten US interests. Nonproliferation is complex work done by a 

variety of organizations and requires an incredibly vast amount of data. However, for purposes of this 

report, the scope of the research here focuses on nonproliferation efforts by means of strategic trade 

controls on dual-use goods.  

When implementing strategic trade controls, it can be difficult for relevant officials to accurately and 

efficiently identify individual, controlled items, particularly when items are dual-use in nature. Images of 

these items are publicly available online, but officials do not necessarily use such resources in screening 

1 “A Machine-Learning Revolution,” Physics World, March 4, 2019, <https://physicsworld.com/a/a-machine-learning-revolution/>. 

2 Ibid.
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potential items of concern, nor do they always have the technical expertise necessary to positively identify 

controlled items.  

Machine learning tools can begin to solve some of these problems of strategic trade control applications. 

Specifically, this report will discuss how image classification models—or machine learning algorithms that 

autonomously classify relevant images—can be trained to recognize controlled dual-use goods. These image 

classification tools can assist regulators and improve the efficacy of strategic trade controls for 

nonproliferation efforts.  

This report aims to expand the research on machine learning and potential nonproliferation applications by 

exploring open-source machine learning image classification tools for WMD-related items (including 

equipment and/or materials.) It will explore if machine learning image classification tools can be employed 

alongside existing monitoring mechanisms to improve nonproliferation efforts. The report will detail 

relevant items of interest and selection methodology, a dataset of relevant WMD-related equipment, and 

successful image classification model development and evaluation. It will also consider potential wider 

applicability of machine-assisted identification for nonproliferation efforts including field applications, such 

as an image dictionary of controlled goods, automating new image classification, and extracting images from 

additional online sources like videos. 

Background 

Defining Dual-Use Goods 

“Dual-use” is a broad term to refer to any item, technology, or software that has both civilian and military 

applications. Dual-use goods include items that are components of WMDs as well as items that can be used 

to manufacture components of WMDs. The multifaceted nature of dual-use goods introduces multiple 

challenges when attempting to regulate commodity flows. The first challenge is that dual-use goods used in 

civilian applications often promote development and strengthen economic ties. Understanding the context 

for how dual-use goods are used is the foundation for managing their risks, and regulators often rely on an 
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aggregation of information to discern the item’s proliferation potential.3 The second challenge innate to 

dual-use goods is that the threshold for control of a dual-use good is often based on the technical 

specifications of the item or its eventual use. When trying to regulate proliferation-sensitive dual-use goods, 

specialized knowledge is often required to determine the intended application of the good and subsequent 

legal and regulatory implications. Often those who are implementing controls do not possess this specialized 

knowledge or background information on items that are particularly sensitive to proliferation. 

Figure 1: A Fine Positioning Linear Actuator: An Example of a Dual-Use Item Potentially Difficult to Visually 

Identify  

This ‘fine positioning linear actuator’ is designed for use in space applications and can be used in missile 

development. At first glance, however, it can appear to merely be a piece of traditional manufacturing or 

industrial equipment.4  

The research in this report seeks to address the challenge in identifying proliferation-sensitive goods. 

Specifically, it seeks to begin to answer the question: how can machine learning be used to make dual-use 

good identification easier and more precise for effective regulation? This report will focus on dual-use goods 

that have been explicitly identified through multilateral export-control regimes as WMD-related equipment 

or items.  

3 Urszula McCormack, Darren Roiser, Robert Edel, Evan Manolios, and Jack Nelson, “Demystifying Dual-Use Goods: From the Chlorine in a pool to 

the antibiotics we take – what your business should be doing,” King & Wood Mallesons, April 18, 2017, 

<https://www.kwm.com/en/hk/knowledge/insights/demystifying-dual-use-goods-20170418>. 

4 “Annex Handbook,” Missile Technology Control Regime, 2017, <https://mtcr.info/wordpress/wp-content/uploads/2017/10/MTCR-Handbook-

2017-INDEXED-FINAL-Digital.pdf>. 
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Strategic Trade Controls  

International and national frameworks seek to aid nonproliferation efforts of dual-use goods. States use 

multilateral export-control regimes to coordinate national export controls for dual-use good regulation.5 

These regimes are voluntary and informal bodies that unanimously decide on membership and the lists of 

items to control, e.g. “trigger lists,” which identify dual-use goods used for the purpose of WMD 

proliferation. There are four multilateral export-control groups that govern most proliferation-sensitive 

goods: the Nuclear Suppliers Group, the Australia Group, the Wassenaar Arrangement, and the Missile 

Technology Control Regime.6  

The data collected for this report drew from the control lists from these four multilateral bodies as well as 

the United States Commerce Control List (CCL).7 However, applications of this report’s findings seek to 

inform a wider discussion on strategic trade controls.  

Machine Learning Precedents 

Demonstrated Advantages of Machine Learning 

Machine learning is not a new phenomenon, but the recent development of algorithms that automatically 

apply complex mathematical calculations to large amounts of data demonstrates the advantage of machine 

learning in enhancing analysis and work efficiency. Moreover, machine learning is easily accessible to 

multiple sectors. 

The growing amounts of publicly available data, powerful and affordable computational processing, and 

affordable data storage enable machine learning algorithms to produce fast and accurate results against 

large, complex datasets. Industries including financial services, health care, government, retail, oil and gas, 

and transportation apply machine learning processes to improve the efficiency of their work.  

 

5 “Multilateral Nonproliferation (Export Control) Regimes and Arrangements,” eCustoms, <https://www.ecustoms.com/about-

us/visual_trade_compliance_resources/multilateral-nonproliferation-export-control-regimes-arrangements/>. 

6 “Multilateral Export Control Regimes,” Bureau of Industry and Security of the US Department of Commerce, 

<https://www.bis.doc.gov/index.php/policy-guidance/multilateral-export-control-regimes>. 

7 “Commerce Control List,” Bureau of Industry and Security of the US Department of Commerce, 

<https://www.bis.doc.gov/index.php/regulations/commerce-control-list-ccl>. 
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The machine learning models discussed in this report rely on deep neural networks. In a deep neural 

network, neurons—or “bite-sized chunks of information”—are layered together to estimate a given 

probability.8 Machine learning models built by deep neural networks algorithms can autonomously learn 

and make predictions; the researcher only needs to provide a dataset and key parameters. This approach is 

referred to as “supervised learning” or “supervised classification.” Applications of machine learning that use 

a framework of deep neural networks and supervised learning can take the shape of speech recognition, 

text recognition, robotics, reasoning, and object recognition. These are only a few examples as there are 

extraordinarily diverse applications available. 

Some definitions are first in order. In this report, a machine learning “model” is a trained algorithm capable 

of predicting if one object is like another based on the object’s features.9 Training a model means teaching 

the algorithm to make predictions based on the input, whereas validating the model means introducing 

new images with similar features to determine how well the model predicts. This report focuses on a 

classification model, or a model that predicts discrete values (i.e. is this X item, yes or no?). 

This report addresses the issue of dual-use item identification; therefore, it discusses object recognition 

models, or more specifically, image classification models. Image classification models create deep learning 

algorithms using computer vision. Computer vision is a computer science term and field of study that 

enables computers to see and process images in the same way that humans do.10 Convolution neural 

networks, or CNNs, are a type of deep learning that have provided the most recent advances in computer 

vision and image recognition.11 CNNs rely on a layered neural network, but unlike traditional deep learning 

neural networks, CNNs do not try to understand the entire image all at once. Rather, the CNN architecture 

makes its predictions from localized regions in a way that mirrors the human visual cortex. CNN architecture 

will be described in more detail in the model development section of this report. 

8 Chris Meserole, “What is machine learning?,” Brookings Institution, October 4, 2018,   <https://www.brookings.edu/research/what-is-machine-

learning/>. 

9 “Framing: Key ML Terminology,” Google Developers, <https://developers.google.com/machine-learning/crash-course/framing/ml-terminology>.

10 “Computer Vision,” Techopedia, February 25, 2019, <https://www.techopedia.com/definition/32309/computer-vision>. 

11 “Framing: Key ML Terminology,” Google Developers. 
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Common examples of image classification machine learning tools can be found on Kaggle™.12 Kaggle is an 

open-source platform for datasets, data-science training, and machine learning practice. One of their more 

popular competitions was a challenge to create an image classification machine learning model that could 

identify if an image contained a dog or a cat.13 Some other examples of image classification models include 

using machine learning for image-based cancer detection14 and facial recognition capabilities.15 

Machine-Assisted Work in Nonproliferation 

In addition to numerous studies on how machine learning could enable transformations in the warfare 

domain, including nuclear risk and strategic stability,16 several state entities and international organizations 

are exploring how machine learning can aid nonproliferation.17 For example, the United States National 

Laboratories, including Sandia National Laboratories18 and Lawrence Livermore National Laboratories19 are 

implementing machine learning models to “accelerate the pace of nonproliferation data analysis.” Similarly, 

12 Kaggle™ is an open-source platform for datasets, data science training, and machine learning practice <https://www.kaggle.com/>. 

13 For more on this “challenge,” see <https://www.kaggle.com/c/dogs-vs-cats>.

14 Zilong Hu, Jinshan Tang, Ziming Wang, Kai Zhang, Ling Zhang, and Qingling Sun, “Deep learning for image-based cancer detection and diagnosis-

A survey,” Science Direct, Vol. 83, (November 2018), pp. 134-149. 

15 “How does facial recognition work?,” Norton Securities, <https://us.norton.com/internetsecurity-iot-how-facial-recognition-software-

works.html#:~:text=Facial%20recognition%20is%20a%20way,faces%20to%20find%20a%20match>. 

16 Melanie Sisson, Jennifer Spindel, Paul Scharre, and Vadim Kozyulin, “The Militarization of Artificial Intelligence,” The Stanley Center for Peace 

and Security, June 2020, <https://stanleycenter.org/publications/militarization-of-artificial-intelligence/>.  

17 For more on warfare applications, see “Artificial intelligence, strategic stability and nuclear risk: Euro-Atlantic perspectives,” SIPRI, May 6, 2019, 

<https://www.sipri.org/news/2019/artificial-intelligence-strategic-stability-and-nuclear-risk-euro-atlantic-perspectives-new-sipri>. 

18 Zoe Nellie, Maikael A. Thomas, and Natacha Peter-Stein, “Data Analytics for Nuclear Nonproliferation: Recent Experience at Sandia National 

Laboratories,” US National Nuclear Security Administration, November 1, 2017, <https://www.osti.gov/servlets/purl/1431503>. 

19 Jeremy Thomas, “Researchers developing deep learning system to advance nuclear nonproliferation analysis,” US National Nuclear Security 

Administration, August 21, 2018, <https://www.llnl.gov/news/researchers-developing-deep-learning-system-advance-nuclear-nonproliferation-

analysis>.
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the International Atomic Energy Agency (IAEA) publicly discussed how it is leveraging machine learning for 

intelligence analysis as well as ways to improve analysts’ routine workflows using machine learning.20  

Machine Learning Model Development and Evaluation 

Methodology 

The research presented in this section is intended to serve as a successful proof of concept demonstrating 

the potential benefits of machine learning image classification for dual-use controlled goods. While the 

findings presented below were not applied to a field case study, potential future field applications will be 

discussed in the conclusion section of this report.   

As previously discussed, the goal of this research is to identify dual-use and controlled goods using a 

machine-assisted image classification model. In practice, this began with identifying items from multilateral 

export control regimes’ control lists, as well as the US CCL; collecting a dataset of selected images directly 

related to biological, chemical, and missile technology; building image classification models; and training, 

tuning, and evaluating these models. The methodology for this process will be further described in the 

proceeding sections.  

Dual-Use Good Dataset and Collection 

To begin this research, the research team identified control and trigger lists from the relevant multilateral 

export control regimes and the US CCL. The research team then sifted through eight control and trigger lists 

that explicitly discuss dual-use goods. These lists include: Nuclear Suppliers Group Guidelines Part One,21 

Nuclear Suppliers Group Guidelines Part Two,22 Australia Group Common Control List Handbook Volume 

 

20 Brian Ulicny, “Toward a more peaceful world: Using technology to aid nonproliferation,” Thomson Reuters Labs, June 13, 2018, 

<https://blogs.thomsonreuters.com/answerson/toward-a-more-peaceful-world-using-technology-to-aid-nonproliferation/>. 

21 “Nuclear Suppliers Group Guidelines Part One,” 

<https://www.iaea.org/sites/default/files/publications/documents/infcircs/1978/infcirc254r14p1.pdf> 

22 “Nuclear Suppliers Group Guidelines Part Two,” 

<https://www.iaea.org/sites/default/files/publications/documents/infcircs/1978/infcirc254r11p2.pdf> 
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One: Chemical Weapons-Related Common Control Lists,23 Australia Group Common Control List Handbook 

Volume II: Biological Weapons-Related Common Control Lists,24 Wassenaar Arrangement List of Dual-Use 

Goods and Technologies and Munitions List (Volume II), 25  Missile Technology Control Regime Annex 

Handbook 2017,26 relevant sections from the International Traffic in Arms Regulations list including the 

United States Munitions List,27 and relevant sections from the US CCL.28  

While reviewing these lists, the research team developed the following selection criteria: 1) If the item is 

controlled solely based on the type of material used to create it, it is not viable for selection, and 2) If the 

item does not yield enough high-quality images, it is not viable for selection. Because items, such as chemical 

development-related items, are often controlled based on their materials composition and technical 

specifications (such as output volume), in the image-collection process it is impossible to assess with 

certainty that an image is or is not made of a particular material. While the presented dataset may include 

pictures of items that are made using uncontrolled materials, such as stainless-steel distillation columns, 

the research team decided it would be first useful to prove that a machine could learn to recognize selected 

item shapes. Further research could investigate other types of machine-assisted recognition to detect 

material of fabrication for control applications. Moreover, machine learning models require large datasets 

 

23 “Australia Group Common Control List Handbook Volume One: Chemical Weapons-Related Common Control Lists,” 

<https://www.dfat.gov.au/publications/minisite/theaustraliagroupnet/site/en/documents/Australia-Group-Common-Control-List-Handbook-

Volume-I.pdf>. 

24 “Australia Group Common Control List Handbook Volume II: Biological Weapons-Related Common Control Lists,” 

<https://www.dfat.gov.au/publications/minisite/theaustraliagroupnet/site/en/documents/Australia-Group-Common-Control-List-Handbook-

Volume-II.pdf>. 

25 “Wassenaar Arrangement List of Dual-Use Goods and Technologies and Munitions List (Volume II),” 

<https://www.wassenaar.org/app/uploads/2019/12/WA-DOC-19-PUB-002-Public-Docs-Vol-II-2019-List-of-DU-Goods-and-Technologies-and-

Munitions-List-Dec-19.pdf>. 

26 “Missile Technology Control Regime Annex Handbook (2017),” <https://mtcr.info/wordpress/wp-content/uploads/2017/10/MTCR-Handbook-

2017-INDEXED-FINAL-Digital.pdf>. 

27 “International Traffic in Arms Regulations,” <https://www.pmddtc.state.gov/ddtc_public?id=ddtc_public_portal_itar_landing>. 

28 “United States Commerce Control List,” <https://www.bis.doc.gov/index.php/regulations/commerce-control-list-ccl>. 
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and many of the items listed on the control lists do not have many images publicly available. While this lack 

of images may be beneficial for nonproliferation efforts, it presented a challenge in dataset collection.  

With this criteria in mind, the research team created a preliminary list of items that might be viable for 

selection. The research team conducted a cursory search for items on the condensed list, attempting to 

determine which of the items would most likely yield the highest number of results while considering both 

quantity and quality of image. 

After this search process, the research team identified four items of interest: chemical distillation columns, 

positive-pressure personnel suits (PPPS), biological safety cabinets, and accelerometers. These items are 

the class labels that the CNS classification model sought to identify. Distillation columns are a chemical-

weapon proliferation risk and controlled by the Australia Group in the Volume I Common Control List 

Handbook. Both biological safety cabinets and positive-pressure personnel suits can be associated with 

biological-weapons development and are also controlled by the Australia Group in the Volume II Common 

Control List Handbook. Accelerometers can be used to develop missile technology for WMD delivery 

systems, and are controlled by the Wassenaar Arrangement, the Missile Technology Control Regime, and 

the US CCL.29  

  

 

29 It should also be noted that the accelerometers controlled under the MTCR are “linear accelerometers designed for use in inertial navigation 

systems or in guidance systems of all types….”. The research team focused on the broader category of mems accelerometers. Mems 

accelerometers are the newest type of accelerometer, and while accelerometers can make various different types of measurements, the square 

mems accelerometers measures x, y, z axis acceleration as opposed to vibration or voltage. While this is a relatively broad category, not 

accounting for specific brands or versions, and has the potential to pose a difficulty for a classification algorithm due to visual similarities to circuit 

boards, accelerometers proved to be one of the least problematic items for dataset creation.  
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Figure 2: Images of the Selected Items30 

 

(L–R): Accelerometer, Biosafety Cabinet, Distillation Column, and Positive-Pressure Personnel Suits  

The research team also sought to include a nuclear-related item, either from the Nuclear Supplier Group 

trigger list or the US CCL. While the research team briefly considered selecting baffle plates as an item, there 

were not enough available images to make this a viable selection option. This difficulty in selecting specific 

items held true for many of the items listed in control lists. A number of the available images of baffle plates 

were diagrams, or images with artificial backgrounds, and the research team determined this type of image 

would not be good training data for a model since it would likely result in overfitting. Overfitting is when a 

model is so tuned to the training data that it is unable to recognize or classify new images. Overfitting will 

be further discussed in the model evaluation section of this report.  

After item selection, the research team collected images by searching various publicly available sources. 

Sources included: official governmental and institutional reports, reports on malfunctioning equipment that 

included selected items, manufacturing reports, distribution sites and inventories, and various analyses 

from non-governmental organizations and individuals. The research team also conducted an in-depth 

search of museums and other public displays of the selected items, as well as information from the 

producers of the items themselves, including various website galleries and image stills from online 

promotional videos. The research team collected as many images of the four selected items as possible, 

emphasizing a diverse range of images, with regards to both image size and file type, and aimed to collect 

 

30 Accelerometer image source: <https://www.amazon.in/embsys-MEMS-Accelerometer-Sensor-ADXL335/dp/B00XR0OW5E>; Biosafety Cabinet 

image source: <https://www.indiamart.com/proddetail/biosafety-cabinet-class-iii-16467740830.html>; Distillation Column source: 

<https://www.indiamart.com/proddetail/distillation-column-20483547048.html>; Positive-pressure personnel suit image source: 

<https://commons.wikimedia.org/wiki/File:Positive-pressure_suit_(orange_suit).jpg>. 
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approximately 200+ images of each item. The research team emphasized images of the selected items 

isolated or alone, selected items in an operational setting, and selected items with other various objects in 

the image. The diversification of image type, size, and quality, as well as a large dataset had the aim of 

improving image classification model results. 

Due to the items’ dual-use and controlled nature, as well as an emphasis on collecting a diverse image 

dataset, the collection process was not without limitations, and ultimately no more than 300 images were 

collected for each item. While these limitations posed challenges for dataset creation, they arguably 

improve nonproliferation efforts by limiting public access to controlled item parts that could be used for 

WMD development. 

After the selected item image collection, the research team collected negative images to train the machine 

learning models. Negative images are images that do not contain pictures of the selected items. 

The research team created an image dataset that includes: 200 images of accelerometers, 202 images of 

distillation columns, 97 images of biological safety cabinets, 280 images of positive-pressure personnel suits, 

and 126 images of items that contained both biological safety cabinets and positive-pressure personnel 

suits. The research team also collected 201 negative images to train the models on for a total dataset size 

of 1,106 images. The number of items per class in a dataset is crucial to understanding the performance of 

the final models, along with associated model metrics and evaluation. Therefore, it is important to 

understand the dataset before discussing model architecture and evaluation.  

Because of the small size of this dataset, the research team briefly considered applying a one-shot learning 

categorization approach.31 However, due to the research team’s assessed skillsets, this approach was deemed 

to be out of the scope of this report. Future research could apply a one-shot learning categorization method.  

Following image collection, the research team organized each class into “train” and “test” folders. The 

research team placed 80% of the total number of items in a class into a training folder, and 20% of the total 

number of items in a class into the test folder. Because of the different number of images in each class, all 

the training and test folders were composed of a different number of images. The presented datasets are 

 

31 Harshall Lamba, “One Shot Learning with Siamese Networks using Keras,” Medium, January 21, 2019, <https://towardsdatascience.com/one-

shot-learning-with-siamese-networks-using-keras-17f34e75bb3d>. 



 

 

17 

 

“unbalanced,” and can tend to show a preference toward the class with more representation, or more 

images. However, these unbalanced datasets do not necessarily affect the accuracy of the model, as will be 

described in the model evaluation section.  

After creating class training and testing datasets, the research team chose to utilize a “flow from dataframe” 

data upload option. This required building a dataframe readable by the Python™ tool Pandas™ for model 

development. Python is a general-purpose programming language that the research team relied on for the 

coding aspects of this research.32  To create a dataframe, the research team placed the image dataset in 

their local machine’s Python working directory. Separately, the research team created a CSV file that 

includes the following columns: dataset, filename, directory name (to show the location of the file), “BSC” 

or biosafety cabinet class, “PPPS” or positive-pressure personnel suit class, “ACC” or accelerometer class, 

“DC” or distillation column class, and “Negative” for a negative image class. This is a custom class structure 

that enables the model to classify items into categories relevant to this research’s outlined goal. Using the 

os.walk function in Python, the research team populated the filename and directory name columns to 

ensure accuracy. The remainder of the dataframe was manually entered, including manually entry if the 

image fell within a test or train dataset and doing “one hot” encoding for the various class columns. One 

hot encoding includes entering a one in the column of the class if the image contains said class and a zero 

in the column of the class if the image does not contain that class. Because the dataset includes images that 

include both biosafety cabinets and positive-pressure personnel suits, the CNS image recognition model 

must be a multi-class recognition model, as will be further discussed in the model development section. 

Model Architecture, Output, and Evaluation 

Model Architecture 

At the outset of this research, the research team had limited knowledge of coding, Python™, and creating 

machine learning models. To begin the model-building process, the research team first familiarized 

themselves with the necessary tools associated with model building and development. The research team 

completed several Python language tutorials, the “Machine Learning Crash Course”33 and “ML Practicum: 

 

32 Python is a general-purpose programming language <https://www.python.org/>. 

33 “Machine Learning Crash Course,” Google Developers, <https://developers.google.com/machine-learning/crash-course>. 
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Image Classification”34  courses by Google Developers™. Additionally, the research team utilized open-

source code platforms such as “Stack Overflow”35 and “GitHub”36 to inform model development.  

Following an initial learning period, the research team installed Python and respective foundational coding 

packages such as Os™, Tensorflow™, Keras™, Pandas™, Numpy™, SKLearn™, and Matplotlib™, on a CNS 

local device. The research team relied on the Spyder™ Python environment, a tool through the Anaconda™ 

open-source Python platform, for model development. Keras™ and TensorFlow™ are the most popular 

applied programming interfaces that use Python packages for machine learning image classification models. 

Creating a machine -learning model includes inputting a dataset, coding model specifications, and receiving 

an output. Model-building methodology includes: uploading a dataset and custom classification system, 

using code to translate the image data into a format that a machine can understand, and defining the output 

layers, or characteristics of the model. 

  

 

34 “Machine Learning Practice: Image Classification,” Google Developers, <https://developers.google.com/machine-learning/practica/image-

classification/next-steps>. 

35 Stack Overflow is an online community for developers to learn and share their programming knowledge <https://stackoverflow.com/>. 

36 GitHub is an online community of developers with the aim of discovering sharing, and building better software <https://github.com/>. 
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Figure 3: Model Development Methodology37 

 

In the initial stages of model development, the research team decided that it would be best to create a 

model that relied on a “flow from dataframe” approach to upload the images. In order to utilize Keras™ on 

a local device with a customized classification system and dataset, there are two popular formats for dataset 

upload: flow_from_directory and flow_from_dataframe. Flow_from_directory is more common and 

organizes the images within separate folders named after their respective class and dataset.38 Conversely, 

flow_from_dataframe, involves mapping all the image classes in a CSV or JSON file. Flow_from_dataframe 

requires the Pandas™ Python™ package to read the class map CSV file and translate it into something a 

machine can read.  

After experimentation with both approaches, the research team found the flow_from_dataframe option to 

be a more suitable option, since flow_from_directory did not handle multi-label images well. In order to 

implement this option, after creating the dataframe as previously described, the research team reorganized 

the folders to have all classes in either a test or train main folder. Similarly, the research team decided to 

employ a generator function in the foundational code and model architecture because machine learning 

relies on multiple iterations to learn. Generators behave like an iterator, or code that does iterations on 

 

37 Model building flowchart adopted from Margaret Maynard-Reid, “An Icon Classifier with TensorFlow Lite Model Maker,” Medium, May 9, 

2020, <https://medium.com/swlh/icon-classifier-with-tflite-model-maker-9263c0021f72>. 

38 J. Vijayabhaskar, “Tutorial on Keras flow_from_dataframe,” Medium, September 21, 2018, <https://medium.com/@vijayabhaskar96/tutorial-

on-keras-flow-from-dataframe-1fd4493d237c>. 
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data, looping through elements of an object, such as specific areas of an image, and can be used similarly 

to an array.39 Generators use less space on devices because they do not hold results in memory, and because 

of this, it may take longer to run a model without a generator. Because of computational space limitations 

a generator approach was the most viable option for the CNS developed models. 

In the foundational code, pre-processing refers to “the transformation applied to data before feeding it to 

the (machine learning) algorithm.”40 Simply, pre-processing is a technique that is used to convert raw data, 

or the images that compose the dataset, into a clean dataset that an algorithm can understand. The function 

ImageDataGenerator was used in model development in order to pre-process the images for Keras™. The 

pre-processing included data augmentation which “artificially boosts the diversity and number of training 

examples by performing random transformations to existing images to create a set of new variants.”41 Data 

augmentation is a common practice and serves as a preventative measure against overfitting the model. 

Data augmentation increases data volume and data diversity and is a useful technique to implement.42 

Image augmentation was not used on the validation or test dataset. While testing models using augmented 

images can be done with a technique referred to as test time augmentation, this approach is often used for 

model selection, as opposed to image classification, and was not applied in this research.43  

The research team developed four different image classification models in order to compare results 

between different approaches in model training and validation. All four models relied on the 

aforementioned data pre-processing and had a batch size of thirty two for the generator iterations. All four 

 

39 Jessica Yung, “Using generators in Python to train machine learning models,” jessicayung.com, October, 2018, 

<https://www.jessicayung.com/using-generators-in-python-to-train-machine-learning-models/>. 

40 “Data Preprocessing for Machine learning in Python,” Geeksforgeeks.org, <https://www.geeksforgeeks.org/data-preprocessing-machine-

learning-python/#:~:text=Data%20Preprocessing%20for%20Machine%20learning%20in%20Python,into%20a%20clean%20data%20set>. 

41 “ML Practicum: Image Classification, Preventing Overfitting,” Google Developers, <https://developers.google.com/machine-

learning/practica/image-classification/preventing-overfitting>. 

42 Image augmentation approaches used in this report included image rotation, width and height shifts, shearing, zooming, and horizontal 

flipping. 

43 For more on how to use a Test-Time Augmentation, see Jason Brownlee, “How to Use Test-Time Augmentation to Make Better Predictions,” 

Machine Learning Mastery, April 3, 2020, <https://machinelearningmastery.com/how-to-use-test-time-augmentation-to-improve-model-

performance-for-image-classification/>. 



 

 

21 

 

models also relied on an Adam optimizer with a learning rate of .0001. An optimizer is required to compile 

Keras models and determines the rate at which the model learns. The research team initially explored 

models with different optimizers, learning rates, and batch sizes, but it found this combination of model 

features to yield the most accurate results. It should be noted that batch sizes smaller than sixteen tend to 

more readily overfit the model, and a learning rate of .0001 is standard in machine learning models utilizing 

transfer learning. The research team attempted to do a step decay learning rate on some models during 

model development in order to see how this would affect model accuracy.44 Results of the step decay 

learning rate were negligible. The research team tested the base model using all the available Keras™ 

optimizers,45 and found the Adam optimizer to consistently yield the best results.  

For model architecture, the research team utilized dropout regularization in the model code to prevent 

overfitting. Dropout regularization “randomly removes units from the neural network during a training 

gradient step.”46 Additionally, because the dataset included multi-class images, the research team relied on 

a sigmoid rather than a softmax output that utilized a binary crossentroypy loss function.47  

As previously noted, in order to train a machine learning algorithm, a test, train, and validate dataset are 

needed. The train dataset is used to initially teach or train the model. The validation dataset is used to 

introduce new images to see if the model can easily recognize new images, or if it is overfit and not able to 

classify new images. The test dataset is used to evaluate the overall model performance. 

Figure 4: Example of Model Training, Validation, and Testing Dataset Processes and Interactions48 

 

44 A step decay learning rate is a learning rate scheduler that reduces the learning rate during model training according to a pre-defined schedule. 

45 Zhijian Li, “Comparison of Optimizers for Keras,” Kaggle, 2018, <https://www.kaggle.com/c/human-protein-atlas-image-

classification/discussion/70253>. 

46 Ibid. 

47 A sigmoid or softmax function is put at the end of a neural network classifier to convert raw output values into probabilities. Because there are 

images with two classes, the research team used a sigmoid output for the models as it is independent and not constrained to sum to one, as 

opposed to a softmax output. Because the sigmoid layer only allows for a single input value, it requires a binary cross entropy loss function. A 

sigmoid output layer and binary crossentropy allow for labeling multi-class images. 

48 “ML Practicum: Image Classification, Another Split,” Google Developers, <https://developers.google.com/machine-learning/practica/image-

classification/preventing-overfitting>. 
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The variables across the four models the research team created include differing validation approaches and 

using a pre-trained versus a simple CNN model architecture. As the previous discussion on the dataset has 

demonstrated, the research team initially did not include a validation folder in the data organization. For 

small datasets such as the one described in this report, it is often recommended to do a k-fold cross 

validation.49 After extensive research regarding feasibility, it was determined that implementing a k-fold 

cross validation alongside generators was out of the scope of the research team’s demonstrated ability. This 

is a validation approach that could be implemented in future research. Because a k-fold cross validation was 

not feasible, the research team decided to test two different validation approaches: one that automatically 

took the last 20% of the training images per class and created a validation folder using the validation_split 

function in Python™, and one that involved manually, randomly selecting 20% of training images from each 

class and sorting them into a validation folder.  

The research team also sought to compare the differences between pre-trained models and models that 

use a basic, self-created, CNN architecture. A pre-trained model is a model previously trained on larger 

datasets of a similar problem and, through a process called transfer learning, can improve model accuracy.50 

 

49 Cross-validation is a resampling procedure that is used to estimate the ability of a model created with a limited dataset to classify unseen data. 

The process has a parameter, k, that refers to the number of groups a dataset will be split into, hence the name “k-fold.” 

50 Pedro Marcelino, “Transfer learning from pre-trained models,” Medium, October 23, 2018, <https://towardsdatascience.com/transfer-

learning-from-pre-trained-models-f2393f124751>. 
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Transfer learning is the process when a model is trained on a separate task, and those weights are then used 

as a starting point for the new task.51 This is a common technique in training deep convolutional neural 

networks, especially with high performing classifiers. The model and the weights that are used are called a 

pre-trained model. For the pre-trained model, the research team relied on the InceptionV3 model previously 

trained on ImageNet from Keras™ that has acquired accuracies over 78%.52 ImageNet is a large image 

database, containing several million images, designed for image recognition research.53  

As described earlier, CNNs receive input feature maps from the image pre-processing stage and create a 

stack of modules, each of which then performs three operations: convolution (or feature extraction), 

rectified linear unit transformation to the convolved feature, and pooling where the CNN down-samples the 

convolved features and reduces the number of dimensions on the feature map.54 Figure 5 below illustrates 

the structure of a convolutional neural network.55  

 

51 Weights are the learnable parameters of a machine learning model and help to determine the strength of connection between two neurons. 

52 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wonjna, “Rethinking the Inception Architecture for 

Computer Vision,” Cornell University, December 11, 2015, <https://arxiv.org/abs/1512.00567>. 

53 ImageNet is a large online image database <http://www.image-net.org/>. 

54 “ML Practicum: Image Classification, Introducing Convolutional Neural Networks,” Google Developers, 

<https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks>. 

55 For this report’s specific CNN architecture, contact the author directly. 
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Figure 5: A typical CNN structure56 

 

The four CNS models varied as follows: Model One used a manual validation and a simple CNN architecture; 

Model Two used a manual validation and a pre-trained model architecture; Model Three used an automatic 

validation split and a CNN architecture; and Model Four used an automatic validation split and a pre-trained 

model architecture. 

Figure 6: CNS Models and Respective Training Approaches 

 

Each model was trained with fifty epochs.57 All models were set to measure the accuracy with which the 

machine learning model could classify images. Accuracy scores in classification model evaluations divide 

 

56 Ibid. 

57 An epoch is one complete presentation of the dataset to be learned to a learning machine.  
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the total number of predictions the model made by the number of correct predictions the model made. 

It should be noted that small jumps or spikes in accuracy are not immediately concerning, as they 

represent images with which the model may be having more or less difficulty. Accuracy alone does not 

provide the full picture of how well a model is doing, especially with class-imbalanced datasets, such as 

the datasets described in this report. Future research could evaluate models using precision and recall 

metrics for a more complete analysis.  

The loss metrics presented below solely represent how far, on average, the model’s prediction was from 

the actual example. As previously mentioned, the models outlined in this report are implementing a binary 

crossentropy loss function that is not weighted.58 Loss metrics do not provide much comparative value 

between models, but rather, are presented to demonstrate learning, or prediction, paces. Large, individual 

spikes are not immediately concerning since there is an element of randomness in training a model. It is 

typical that the model performs better on training data than the validation data, but an upward curve in 

accuracy and a generic downward trend in loss is ideal.  

Model Results and Evaluation 

Using this described model-building approach, the research team was able to successfully create and train 

models that were able to recognize and classify dual-use images from the CNS dataset. Figures 7-18 below 

provide a comparison of training and validation results for the metrics of accuracy and loss for all four CNS 

models. Training datasets are represented by a blue line, and validation datasets are represented by an 

orange line. Again, these models were successful for the purposes of this research, and while the metrics 

may not be perfect, they are nonetheless indicative of a machine that learned to classify dual-use goods and 

did so effectively.59 

  

 

58 While there are other types of loss functions, such as categorical crossentropy, binary crossentropy is best suited for the models described in 

this report as the models are designed to recognize multi-class images. The underlying mathematical equation of binary crossentropy is: BCE(t,p) = 

-(t*log(p) + (1-t) *log(1-p)). For more on binary crossentropy, see “How to use binary & categorical crossentropy with Keras?,” Machine Curve, 

October 22, 2019, <https://www.machinecurve.com/index.php/2019/10/22/how-to-use-binary-categorical-crossentropy-with-keras/#binary-

crossentropy-for-binary-classification>. 

59 For this report’s numeric results, contact the author directly. 
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Figure 7: Model One Accuracy

 

 

Figure 8: Model One Loss 
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Figure 9: Model Two Accuracy 

 

 

Figure 10: Model Two Loss 
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Figure 11: Model Three Accuracy 

 

 

Figure 12: Model Three Loss 
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Figure 13: Model Four Accuracy 

Figure 14: Model Four Loss 
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Figure 15: Model Comparison: Training Accuracies

Figure 16: Model Comparison: Validation Accuracies
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Figure 17: Model Comparison: Training Losses

 

Figure 18: Model Comparison: Validation Losses
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Of the four models, Models Two and Four had the best training and validation accuracy results. This was to 

be expected as Models Two and Four relied on a pre-trained model and were able to utilize transfer learning 

to achieve better results than the models with simple, not previously trained, convolution neural networks. 

Between Models Two and Four, Model Four had slightly higher accuracy across both its training and 

validation datasets. This would suggest that employing an automatic validation split rather than manually 

splitting the data results in a slightly more accurate model. However, these results are likely not statistically 

significant. Because the difference in accuracy between these models is small, it does not necessarily mean 

that one validation approach is better than the other. It is important to remember that, because of the 

dataset imbalance, accuracy may not be the best metric to understand the classification value of these 

models and further evaluation is recommended. As can be seen in Figures 11 and 12, some models tend to 

demonstrate periodicity, or a seemingly repetitive behavior, and this is an algorithm behavior that should 

be explored in future research. Running the model for more epochs could provide a clearer picture of how 

the model is behaving. Accuracy metrics of these models should be considered in tandem with other model 

characteristics, such as the size and type of the dataset.  

In addition to the training and validation visualizations and results, it is important to also evaluate the 

trained models on the test dataset. For purposes of continuity, the research team relied on the use of an 

evalutate generator. The evaluate generator tests the overall accuracy of a model and provides a single 

metric to indicate its results. This is a general evaluation to provide a sense of how well a model is learning 

and classifying, and this function does not allow the research team to determine which images specifically 

were misclassified. Below, in Table 1, are the evaluation results from all four models.  From the evaluation 

function, it is clear that Model Four had the best results with an accuracy of around 95%. 

Table 1: CNS Model Evaluation Accuracy Scores 

To further evaluate these models for future similar research, it could be beneficial to save the models and 

images to a device’s memory and perform predictions on single images so as to determine which particular 

images the model is having difficulty with and any trends across the image that might indicate features with 
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which the model is specifically struggling. Because the purpose of this report is a proof of concept, this 

evaluation approach was out of the scope of this research. 

Conclusions 

Model Assesment 

By building these image recognition and classification models, it was the goal of the research team to assess 

the potential utility in developing classifiers for any and/or all controlled goods that could eventually be 

deployed alongside personnel implementing strategic trade controls and detecting any potential violations 

in these controls. Based on this stated goal and respective successful model results, it is clear that a machine 

learning classification model could be a useful tool to employ. However, the demonstrated limitations must 

also be considered.  

From the results, it is clear that machine learning models are able to accurately and effectively identify 

controlled dual-use goods. Based on the provided loss metrics, it is evident that the machine learning 

models would be most efficient in image recognition and classification when employed alongside a human, 

such as an individual implementing strategic trade controls or assessing potential control violations. Using 

an image classification machine learning tool, the issue of identifying proliferation-sensitive dual-use goods 

can begin to be addressed, supplementing nonproliferation efforts through enhanced strategic trade 

controls. The models outlined here could be further developed to help personnel without specialized 

knowledge implement strategic trade controls on dual-use goods by serving as an “image classification 

dictionary” of sorts. This assistance from machine learning would be more advantageous in implementing 

controls than monitoring efforts that only relied on human regulators. 

The limitations outlined in this report are also worth considering when discussing the viability of future 

machine learning applications. It is important to note that controlled items might have a different context 

when they are being traded internationally. There may be clutter—or features that distract from the main 

object of interest—surrounding items of interest depending on how and where they are being shipped 

that might affect image classification capabilities. With this in mind, perhaps the largest and most 

important consideration when moving forward with additional research is image dataset size and 

availability. Despite the accurate model results presented here, there needs to be a wider availability of 

images to advance research in this field. While limited access to controlled and dual-use goods can benefit 
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nonproliferation, larger—and more diverse—datasets are necessary for continued model exploration. A 

potential solution to this issue could be resampling so that all classes are equally represented. Even still, 

as discussed by the complications surrounding the data-collection process, it is presently difficult to build 

a dataset that is uniform and representative of all controlled items that would be ideal for image 

classification. While the research team attempted to avoid biases in the dataset formation, the limited 

availability of images made it difficult to ensure image diversity. Ultimately, the dataset determines the 

success of the machine learning model, and this case, must be improved for future field applications.  

An important next step in this research would be developing larger datasets of more classes that could be 

further illustrative of controlled goods and improve the training and validation of machine learning models. 

Similarly, in this dataset expansion, explicitly selecting additional images for training and validation that 

would test “edge” cases—where the machine learning algorithm could potentially struggle with visually 

similar items—would be beneficial. This would require discussions about best practices in building a large 

dataset for training a machine learning algorithm, including discussions identifying biases that exist in pre-

existing datasets and how to best avoid them. Additionally, this would require experts and end-users to 

identify objects the classifier might be shown that could conceivably be similar enough to cause errors. 

Because of the criteria that decide which dual-use goods are subject to export control, it is unlikely that full 

automation by means of machine learning image classification is likely. While image classification models 

can recognize objects, often they cannot recognize context nor specific item characteristics such as material 

and size. The importance of context when assessing the proliferation potential of a dual-use good is not 

eliminated with machine learning models. As demonstrated in the model evaluation section, it is clear that 

the models struggle with some images and classes, particularly those with complex and/or similar settings. 

This problem of context could be a limitation of the dataset and could be further improved upon 

contingently with dataset improvement. However, even with dataset development, it is likely that a 

machine learning model will be more accurate in classifying and identifying certain images over others. This 

non-uniform application, paired with the diversity of goods that fall under strategic trade controls, make it 

clear that machine learning models alone cannot solve the issues of dual-use strategic trade controls 

outlined in this report.  
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Potential Machine-Assisted Applications and Future Research 

As briefly described above, it would be useful to apply machine learning classification tools alongside 

implementers of strategic trade control in order to improve their dual-use object recognition capabilities. 

As the models currently stand, and with subsequent further development, field applications could take the 

shape of an image dictionary of sorts. If an implementer of controls does not have specialized knowledge of 

what a specific item looks like, or whether an item is controlled, they could rely on a machine learning tool 

to provide them with said knowledge, thereby improving the efficacy of strategic trade controls. Machine 

learning tools could inform implementers what a dual-use controlled item looks like alone and in an 

operational context, as well as how the object might be used for WMD proliferation. As research progresses 

and datasets are improved, additional goods could subsequently be added to this reference database, 

proving to be more effective in preventing WMD proliferation.  

Immediate future research endeavors related to image classification machine learning models to help 

identify controlled dual-use goods for nonproliferation efforts should focus on expanding and improving 

relevant, publicly available datasets. To do this, a separate machine learning tool could be employed to 

monitor relevant websites and automatically tag or classify new images based on the existing trained models 

and respective datasets. Additionally, a scraper tool could be employed to automatically extract relevant 

images from videos and various websites. These images could then be used to create improved training and 

validation datasets.  

Finally, it would be useful for continued research to assess the feasibility of field applications alongside 

regulatory agents and warfighters. It would be of value to test mobile phone applications, or similar field 

applications, to see if it provides machine-assisted detection of dual-use, controlled items.  

The research outlined in this report is an important step in demonstrating the potential value of machine 

learning tools can have to solve in solving some of challenges of strategic trade control applications. While 

more research and modeling are needed, in the future, these image classification tools can assist regulators 

and improve the efficacy of strategic trade controls for nonproliferation efforts. 
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